Skip to main content Accessibility help
×
Home

The Effect of Grain Boundary Chemistry on the Slip Transmission Process Through Grain Boundaries in Ni3Al

Published online by Cambridge University Press:  25 February 2011

I. M. Robertson
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, 1304 W. Green St., Urbana II 61801.
T. C. Lee
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, 1304 W. Green St., Urbana II 61801.
Raja Subramanian
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, 1304 W. Green St., Urbana II 61801.
H. K. Birnbaum
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, 1304 W. Green St., Urbana II 61801.
Get access

Abstract

The conditions established in disordered FCC systems for predicting the slip system that will be activated by a grain boundary to relieve a local stress concentration have been applied to the ordered FCC alloy Ni3Al. The slip transfer behavior in hypo-stoichiometric Ni3Al with (0.2 at. %B) and without boron was directly observed by performing the deformation experiments in situ in the transmission electron microscope. In the boron-free and boron-doped alloys, lattice dislocations were incorporated in the grain boundary, but did not show evidence of dissociation to grain boundary dislocations or of movement in the grain boundary plane. The stress concentration associated with the dislocation pileup at the grain boundary was relieved by the emission of dislocations from the grain boundary in the boron-doped alloy. The slip system initiated in the adjoining grain obeyed the conditions established for disordered FCC systems. In the boron-free alloy, the primary stress relief mechanism was grain-boundary cracking, although dislocation emission from the grain boundary also occurred and accompanied intergranular crack advance. Because of the importance of the grain boundary chemistry in the models for explaining the boron-induced ductility in hypo-stoichiometric Ni3Al, the chemistry of grain boundaries in well-annealed boron-doped and boron-free alloys was determined by using EDS. No Ni enrichment was found at the grain boundaries examined. These observations are discussed in terms of the different models proposed to explain the ductility improvement in the boron-doped, hypo-stoichiometric alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Bollmann, W., Michaut, B. and Sainfort, G., Phys. Stat. Sol. (a), 13, 637, (1972).CrossRefGoogle Scholar
2. Bollmann, W., Crystal Defects and Crystalline Interfaces (New York, Springer), 1970.CrossRefGoogle Scholar
3. Pond, R.C., Proc. Roy. Soc. Lond. A, 357, 471, (1977).CrossRefGoogle Scholar
4. Pond, R.C. and Smith, D.A., Phil. Mag., 36, 353, (1977).CrossRefGoogle Scholar
5. Robertson, I.M., Bond, G.M., Lee, T.C., Shih, D.S. and Birnbaum, H. K., J. Physics Paris, C5–677 (1988).Google Scholar
6. Bond, G.M., Robertson, I.M. and Birnbaum, H.K., J. Mat Research, 2, 436, (1987).CrossRefGoogle Scholar
7. Lee, T.C., Robertson, I.M. and Birnbaum, H.K., Scripta Metall., 23 799, (1989); J. of Ultramicroscopy, 22, 212, (1989); Phil. Mag., 62, 131, (1990) and Metall. Trans. A., 21A, 2437, (1990).CrossRefGoogle Scholar
8. Lee, T. C., Robertson, I.M. and Birnbaum, H. K., Acta Metall., 37, 407, (1988).CrossRefGoogle Scholar
9. Lee, T.C., Robertson, I. M. and Birnbaum, H.K., Acta Metall., Submitted.Google Scholar
10. Shen, Z., Wagoner, R.H. and Clark, W. A. T., Scripta Metall., 20, 921, (1986).CrossRefGoogle Scholar
11. CForwood, T. and Clarebrough, L.M., Phil. Mag. 44, 31, (1981).CrossRefGoogle Scholar
12. Lim, L. C., Scripta Metall., 18, 1139, (1984).CrossRefGoogle Scholar
13. Kurdlowski, K.J., Varin, R.A., and Zielinski, W., Acta Metall., 22, 71, (1984).CrossRefGoogle Scholar
14. Shen, Z., Wagoner, R.H. and Clark, W. A. T., Scripta Metall., 36, 3231, (1988).Google Scholar
15. Livingston, J.D. and Chalmers, B., Acta Metall., 5, 322, (1957).CrossRefGoogle Scholar
16. Lim, L.C. and Raj, R., J. Physics, Paris, C4–581 (1985).Google Scholar
17. The alloys were obtained from DrKroeger, D., ORNL.Google Scholar
18. Baker, I., Schulson, E.M. and Michael, J.R., Phil. Mag. B. 57, 379,(1988).CrossRefGoogle Scholar
19. Farkas, D., Lewus, M.O., and Rangarajan, V., Scripta Metallurgica, 22, 1195, (1988).CrossRefGoogle Scholar
20. Edington, J.W.. Practical Electron Microscopy in Materials Science. Monograph 2, Macmillan Press, London 1975.Google Scholar
21. Subramanian, Raja, Robertson, I.M. and Birnbaum, H.K., Scripta Metall, et Mat., 25, 2763, (1991).CrossRefGoogle Scholar
22. George, E.P., Liu, C.T. and Padgett, R.A., Scripta Metall., 23, 979, (1989).CrossRefGoogle Scholar
23. Schulson, E.M., Weihs, T.P., Baker, I., Frost, H.J. and Horton, J.A.. Acta Metall., 34, 1395 (1986).CrossRefGoogle Scholar
24. Baker, I., Schulson, E.M. and Horton, J.A., Acta Metall., 25, 1533, (1987).CrossRefGoogle Scholar
25. Baker, I. and Schulson, E.M., Scripta Metall., 23, 1883, (1989).CrossRefGoogle Scholar
26. Schulson, E.M. and Baker, I., Scripta Metall, et Mater., 25, 1253, (1991).CrossRefGoogle Scholar
27. Schulson, E.M., Weihs, T.P., Viens, D.V. and Baker, I., Acta Metall., 33, 1587, (1985).CrossRefGoogle Scholar
28. Khadkikar, P.S., Vedula, K. and Shabel, B.S., Met Trans A, 28A, 425, (1987).CrossRefGoogle Scholar
29. Baker, I., Schulson, E.M., Michael, J.R. and Pennycook, S. J., Phil. Mag. B., 62, 659, (1990).CrossRefGoogle Scholar
30. Aoki, K. and Izumi, O., J. Japan Inst. Metals, 43, 1190, (1979).CrossRefGoogle Scholar
31. Subramanian, Raja, Ph.D. Thesis, University of Illinois, 1991.Google Scholar
32. Strotk, W., Wendt, H., Carter, C. B. and Kohlstedt, D.L., Acta Metall., 36, 983, (1988).Google Scholar
33. Baker, I., Huang, B. and Schulson, E.M., Acta Metall., 21, 493, (1988).CrossRefGoogle Scholar
34. Yan, W., Jones, I. P. and Smallman, R. E., Scripta Metall., 21, 1511, (1987).CrossRefGoogle Scholar
35. Mackenzie, R.A. D., Vaudin, M.D. and Sass, S.L., Proc. MRS, 122, 461, (1988).CrossRefGoogle Scholar
36. Swiatnicki, W.A. and Grabski, M.W., Acta Metall., 21, 1307, (1989).CrossRefGoogle Scholar
37. Rice, J.R., in The Effect of Hydrogen on the Behavior of Metals. 455, AIME, New York, 1976.Google Scholar
38. Lui, C.T., White, C.L. and Horton, J.A., Acta Metall., 33, 213, (1985).Google Scholar
39. Miller, M.K. and Horton, J. A., J. de Phys., C7, 263, (1986).Google Scholar
40. Chen, S. P. Voter, A.F. and Srolovitz, D. J., Scripta Metall., 20, 1389, (1986).CrossRefGoogle Scholar
41. Chen, S.P., Voter, A.F., Albers, R.C., Boring, A.M. and Hay, P.J., J. Mater. Res., 5, 955, (1990).CrossRefGoogle Scholar
42. Vitek, V. and Chen, S. P., Scripta Metall, et Mat., 25, 1237, (1991).CrossRefGoogle Scholar
43. Bond, G.M., Robertson, I.M. and Birnbaum, H.K., Acta Metall., 37, 1407, (1989).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 20th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-rm8z7 Total loading time: 0.487 Render date: 2021-01-20T11:16:21.919Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Effect of Grain Boundary Chemistry on the Slip Transmission Process Through Grain Boundaries in Ni3Al
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Effect of Grain Boundary Chemistry on the Slip Transmission Process Through Grain Boundaries in Ni3Al
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Effect of Grain Boundary Chemistry on the Slip Transmission Process Through Grain Boundaries in Ni3Al
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *