Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-sbc4w Total loading time: 0.304 Render date: 2021-03-06T09:29:44.330Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Effect of Crystal Size on the Structural and Functional Properties of Water-Stable Monodisperse ZnO Nanoparticles Synthesized Via a Polyol-Route

Published online by Cambridge University Press:  18 July 2013

Yesusa Collantes
Affiliation:
Department of Physics, University of Puerto Rico, Mayaguez 00980, PR, 00680-9044 USA
Oscar Perales-Perez
Affiliation:
Department of Engineering Science and Materials, University of Puerto Rico, Mayaguez, PR, 00680-9044 USA
Get access

Abstract:

Highly monodispersed ZnO nanoparticles (NPs) have been synthesized in polyol medium. The control on crystal size was attempted at 180°C by monitoring the heating rate of reacting solutions and the cooling rate (quenching) at the end of the reaction time. The possibility to promote crystal growth by heterogeneous nucleation was also evaluated; in this approach, pre-synthesized 5-nm pure ZnO nanocrystals were used as seeds in fresh Zn-polyol solutions at suitable seeds/ZnO w/w ratios. As-synthesized samples were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier Transform Infrared spectroscopy (FT-IR), Absorbance (UV-vis) and Photoluminescence spectroscopy (PL). XRD measurements confirmed the formation of well crystallized ZnO-wurtzite with absence of secondary phases in both seeds and grown crystals. FT-IR analyses evidenced the presence of organic moieties on the surface of the nanoparticles that are associated to the functional groups of polyol by-products; these adsorbed species would have prevented particles from aggregation. PL measurements (excitation wavelength 345 nm) reveled that a tuning in the emission bands of ZnO NPs can be achieved through synthesis conditions and crystal size. HRTEM measurements evidenced the formation of bare ZnO NPs of 2 nm, 6 nm, 20 nm and clusters of small nanocrystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Özgür, U., Alivov, Y. I., Liu, C., et al. ., Journal of Applied Physics 2005, 98, 041301.CrossRef
Fu, H.-K., Cheng, C.-L., Wang, C.-H., Lin, T.-Y., Chen, Y.-F., Advanced Functional Materials 2009, 19, 3471.CrossRef
Qin, Y., Wang, X., Wang, Z. L., Nature 2008, 451, 809.CrossRef
Wang, Z. L., Kong, X. Y., Ding, Y., Gao, P., Hughes, W. L., Yang, R., Zhang, Y., Advanced Functional Materials 2004, 14, 943.CrossRef
Zhou, J., Advanced Materials 2006, 18, 2432.CrossRef
Çetinörgü, E, Journal of Physics D: Applied Physics 2007, 40, 5220.CrossRef
Schmidt-Mende, L., MacManus-Driscoll, J. L., Materials Today 2007, 10, 40.CrossRef
Cai, W., Wan, J., Journal of colloid and interface science 2007, 305, 366.CrossRef
Panfilova, E. V., Khlebtsov, B. N., Burov, A. M., Khlebtsov, N. G., Colloid Journal 2012, 74, 99.CrossRef
Cullity, B. D., Elements of X-ray Diffractions; Cohen, Morris, Ed.; Addison Wesley, MA, 1972; p. 102.Google Scholar
Cornell, R., The iron oxides: structure, properties, reactions, occurrences, and uses; second.; Wiley, Weinheim, 2003; p. 141.CrossRefGoogle Scholar
Rajh, T., Chen, L. X., Lukas, K., Liu, T., Thurnauer, M. C., Tiede, D. M., Physical Chemistry B 2002, 106, 1053.CrossRef
Zhao, J., Tan, R., Zhang, Y., Yang, Y., Guo, Y., Zhang, X., Wang, W., Song, W., American Ceramic Society 2011, 93, 725.CrossRef
Morkoç, H., Özgür, U., Zinc Oxide: Fundamentals, Materials and Device Technology; Wiley-VCH, 2008.Google Scholar
Feng, L., Cheng, C., Yao, B. D., Wang, N., Loy, M. M. T., Applied Physics Letters 2009, 95, 053113.CrossRef
Fonoberov, V. A., Balandin, A. A., Materials Research 2004, 818, 1.
Jeong, E.-S., Yu, H.-J., Kim, Y.-J., Yi, G.-C., Choi, Y.-D., Han, S.-W., Journal of Nanoscience and Nanotechnology 2010, 10, 3562.CrossRef
Ischenko, V., Polarz, S., Grote, D., Stavarache, V., Fink, K., Driess, M., Advanced Functional Materials 2005, 15, 1945.CrossRef
Halliburton, L. E., Giles, N. C., Garces, N. Y., Luo, M., Xu, C., Bai, L., Boatner, L. A., Applied Physics Letters 2005, 87, 172108.CrossRef
Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X., Cai, W., Advanced Functional Materials 2010, 20, 561.CrossRef
Hofmann, D., Hofstaetter, A., et al. ., Physical Review Letters 2002, 88, 045504.CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 6th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Crystal Size on the Structural and Functional Properties of Water-Stable Monodisperse ZnO Nanoparticles Synthesized Via a Polyol-Route
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of Crystal Size on the Structural and Functional Properties of Water-Stable Monodisperse ZnO Nanoparticles Synthesized Via a Polyol-Route
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of Crystal Size on the Structural and Functional Properties of Water-Stable Monodisperse ZnO Nanoparticles Synthesized Via a Polyol-Route
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *