Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-13T01:00:20.392Z Has data issue: false hasContentIssue false

Early History of Solid State Ionics

Published online by Cambridge University Press:  21 February 2011

Takahashi T.*
Affiliation:
Professor, Emeritus of Nagoya University
Get access

Abstract

Though the term “Solid State lonics” was named originally by the present author early in the 1960s, solid ionic conductors which are involved in the field of Solid State lonics have been recognized since the mid-nineteenth century. However, room temperature high coniuctivity solid ionic conductors have been studied only after the 1960s. A field of Solid State lonics covers the stuaies of all phenomena of ions in solids, especially solids exhibiting high ionic and electronic-ionic mixed conductivities at fairly low temperatures below their melting points. The applications of these solids are also included in this fiela. Here, only the early history of high conductivity solid ionic conductors which have the longest history in the field of Solid State Ionics is described briefly.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1] Faraday, M., Experimental Researches in Electricity, (Taylor and Francis, London, 1839), p. 1339.Google Scholar
2] Buff, H., Ann. Chem. Pharm. 90, 257 (1854).Google Scholar
3] Kohlrausch, W., Ann. Physik u. Chem. N.F. 17, 642 (1882).Google Scholar
4] Warburg, E., Ann. Physik u. Chem. N.F. 17 21, 662 (1885).Google Scholar
5] Lehmann, O., Ann. Physik u. Chem. N.F. 17 24, 1 (1885).Google Scholar
6] Warburg, E. and Tegetmeier, F., Ann. Physik u. Chem. N.F. 17 32, 455 (1888); F. Tegetmeier, Ann. Physik u. Chem. N.F. 17 41, 18 (1890).Google Scholar
7] Lehmann, O, Ann. Physik u. Chem. N.F. 17 38, 396 (1889).CrossRefGoogle Scholar
8] Wiedemann, G., Die Lehre von der ElectricitAt, (Verlag F. Vieweg u. Sohn, Braunschweig, 1893/1894),1, p.553, p.565, p.815; 2, p.491.Google Scholar
9] Nernst, W., Z. Elektrochem. 6, 41 (1900).Google Scholar
10] Haber, F. and Tolloczko, A., Z. anog. Chem. 41, 407 (1904), 51, 245, 289 (1906).Google Scholar
11] Bruni, G. and Scarpa, G., Rend. reale accad. naz. Lincei 22, 483(1913).Google Scholar
12] Tubandt, C. and Lorenz, E., Z. Physik. Chem. 87, 513 (1914)Google Scholar
13] Tubandt, C., Z. anorg. allgem. Chem. 115, 105(1921); C. Tubandt and H. Reinhold, Z. Elektrochem. 29, 313(1923).Google Scholar
14] Joffé, A., Ann. Phys. (leipzig) 72, 461 (1923).CrossRefGoogle Scholar
15] Frenkel, J., Z. Phys. 35, 652 (1926).CrossRefGoogle Scholar
16] Wagner, C. and Schottky, W., Z. phys. Chem. B11, 163 (1930); Schottky, W., B29, 335 (1935).Google Scholar
17] Tubandt, C., Reinhold, H., and Liebold, G., Z. anorg. allgem. Chem. 197, 225 (1931).CrossRefGoogle Scholar
18] Jost, W. and Schweitzer, H., Z. phys. Chem. B20, 118 (1933).Google Scholar
19] Tubandt, C. in Handbuch der Experimentalphysik, edited by Wien, W. and Harms, F. (Akademische Verlagsgesellschaft, Leipzig, 1932) 12, Part 1, p. 383.Google Scholar
20] Strock, L. W., Z. phys. Chem. B25, 441 (1934), B31, 132 (1935).Google Scholar
21] Rahlf, P., Z. phys. Chem. B25, 156 (1936).Google Scholar
22] Trombe, F. and Foex, M., Compt. rend. 236, 1783 (1953); A. Dietzel and H. Tober, Ber. Dtsch. Keram. Ges. 30, 47, 71 (1953); W. D. Kingery, J. Pappis, M. E. Doty, and D. C. Hill, J. Amer. Ceram. Soc. 42, 393 (1959).Google Scholar
23] Baur, E. and Preis, H., Z. Elektrochem. 43, 727 (1937).Google Scholar
24] Hund, F., Z. phys. Chem. 199, 142 (1952).Google Scholar
25] Kiukkola, K. and Wagner, C., J. Electrochem. Soc. 10, 308, 379 (1957).Google Scholar
26] Reuter, B. and Hardel, K., Angew. Chem. 72, 138 (1960);Naturwiss. 48, 61 (1961); Z. anorg. allgem. Chem. 340, 158, 168(1965); Ber. Bunsenges. phys. Chem. 70, 82 (1966).Google Scholar
27] Takahashi, T. and Yamamoto, O., Denki Kagaku 32, 610 (1964), 33, 346 9 (1965), 35, 181 (1967); Electrochim. Acta 11, 779 (1966).Google Scholar
28] Yao, Y. F. T. and Kummer, J. T., J. Inorg. Nucl. Chem. 29, 2453 (1967).Google Scholar
29] Rankin, G. A. and Merwin, H. E., J. Amer. Chem. Soc. 38, 568 (1916).Google Scholar
30] Owens, B. B., Argue, G. R., Groce, I. L., and Hermo, L. D., J. Electrochem. Soc. 116, 302 (1969).Google Scholar
31] Bradley, J. N. and Green, P. D., Trans. Faraday Soc. 62, 2069 (1966), 63, 424 (1967).Google Scholar
32] Owens, B. B. and Argue, A. G., Science 157, 308 (1967); J. Electrochem. Soc. 117, 898 (1970).Google Scholar
33] Geller, S., Science 157, 310 (1967).CrossRefGoogle Scholar
34] Owens, B. B., J. Electrochem. Soc. 117, 1536 (1970).Google Scholar
35] Geller, S. and Lind, M. D., J. Chem. Phys. 52, 5854 (1970).Google Scholar
36] Takahashi, T. and Yamamoto, O., Denki Kagaku, 33, 733 (1965); T. Takahashi, O. Yamamoto, K. Tsukada, and A. Baba, ibid. 35, 32 (1967); T. Takahashi, O. Yamamoto, and K. Kuwabara, ibid. 35, 264 (1967); O. Yamamoto and T. Takahashi, ibid. 35, 651 (1967);T. Takahashi, K. Kuwabara, and O. Yamamoto, ibid. 35, 682 (1967), 36 530 (1968).Google Scholar
37] Takahashi, T., Yamamoto, O., and Nomura, E., Denki Kagaku, 33. 38, 360 (1970).Google Scholar
38] Rice, M. J. and Roth, W. L., J. Solid State Chem. 4, 294 (1972).Google Scholar
39] Kummer, J. T. and Weber, N., Proc. SAE Cong., Paper 670179 (1967).Google Scholar