Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-14T20:44:25.527Z Has data issue: false hasContentIssue false

Doping Studies of n-Type CsBi4Te6 Thermoelectric Materials

Published online by Cambridge University Press:  01 February 2011

Melissa A. Lane
Affiliation:
Dept of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208.
John R. Ireland
Affiliation:
Dept of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208.
Paul W. Brazis
Affiliation:
Dept of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208.
Theodora Kyratsi
Affiliation:
Department of Chemistry, Michigan State University, East Lansing, MI 48824.
Duck-Young Chung
Affiliation:
Department of Chemistry, Michigan State University, East Lansing, MI 48824.
Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry, Michigan State University, East Lansing, MI 48824.
Carl R. Kannewurf
Affiliation:
Dept of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208.
Get access

Abstract

We have previously reported the successful p-type doping of CsBi4Te6 which had a high figure of merit at temperatures below 300 K. In this study, several dopants were explored to make n-type CsBi4Te6. A program of measurements was performed to identify the optimum doping concentration for several series of dopants. The highest power factors occurred around 125 K for the 0.5% Sn doped CsBi4Te6 sample which had a power factor of 21.9 μW/cm•K2 and 1.0% Te doped CsBi4Te6 which had a power factor of 21.7 μW/cm•K2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Stordeur, M., Phys. Status Solidi vol. 161, 831, (1990).Google Scholar
[2] Jeon, H. H., Ha, H. P., Hyun, D. B., Shim, D. J., J. Phys. Chem. Solids vol. 4, 579, (1991).Google Scholar
[3] Testardi, L. R., Bierly, J. N. Jr, Donahoe, F. J, J. Phys. Chem. Solids vol. 23, 1209, (1962).Google Scholar
[4] Chung, D. Y., Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C., Kanatzidis, M., Science vol. 287, 1024, (2000).Google Scholar
[5] Lyding, J. W., Marcy, H. O., Marks, T. J., Kannewurf, C. R., IEEE Trans. Instrum. Meas. vol. 37, 756, (1988).Google Scholar
[6] Kanatzidis, M. G. Chung, D. Y.., Iordanidis, L., Choi, S. K., Brazis, P., Rocci, M., Hogan, T., Kannewurf, C. R., Thermoelectric Materials 1998-The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications edited by Tritt, T. M., Kanatzidis, M. G. Mahan, G. D., Lyon, H. B. Jr, (Mat. Res. Soc. Symp. Proc. 545, Warrendale, PA. (1999) 233.Google Scholar
[7] Marcy, H. O., Marks, T. J., Kannewurf, C. R., IEEE Trans. Instrum. Meas. vol. 39, 756 (1990).Google Scholar
[8] Maldonado, O., Cryogenics, vol. 32, 908, (1992).Google Scholar
[9] Hogan, T. P., Ph.D. thesis, Northwestern University, 1996.Google Scholar
[10] Schindler, J. L., Hogan, T. P., Brazis, P. W., Kannewurf, C. R., Chung, D. Y., Kanatzidis, M. G., Thermoelectric Materials-New Directions and Approaches edited by Tritt, T. M., Kanatzidis, M. G., Lyon, H. B. Jr, Mahan, G. D., (Mat. Res. Soc. Symp. Proc. 478, Warrendale, PA) 327.Google Scholar
[11] Ioffe, A. F., Semiconductor Thermoelements and Thermoelectric Cooling, (Inforsearch Ltd, London, 1957).Google Scholar