Hostname: page-component-546b4f848f-q5mmw Total loading time: 0 Render date: 2023-06-04T01:47:35.737Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Does the Subsurface Superheating Effect Really Exist?

Published online by Cambridge University Press:  15 February 2011

Valentin Craciun
Laser Department, National Institute for Laser, Plasma and Radiation Physics, Bucharest VMagurele, PO Box MG-36, RO-76900, Romania;
Doina Craciun
Laser Department, National Institute for Laser, Plasma and Radiation Physics, Bucharest VMagurele, PO Box MG-36, RO-76900, Romania;
Get access


The existence inside targets during pulsed laser ablation of a sub-surface superheating effect (SSSH) has been predicted by numerical temperature estimations. The experimental evidence has been so far only indirect, based on the modification of the surface morphology caused by the explosive volume boiling induced by the SSSH effect. However, round-shaped micrometer-sized cavities formed by gas release due to volume boiling have been found on several target materials even when the temperature estimations did not predict any SSSH effect. Although the SSSH effect could exist under certain conditions, it seems that it is not a prerequisite for explosive volume boiling which is the actual mechanism responsible for droplets emission. Volume boiling could occur whenever a thick liquid layer, whose temperature is much higher than the equilibrium boiling value is formed and lasts for several tens of nanoseconds on the target surface, a situation usually found when the laser wavelength is poorly absorbed by the target material.

Research Article
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. Dabby, F. W. and Paek, U.-C., IEEE J. Quant. Electr. 8, 106 (1972).CrossRefGoogle Scholar
2. Gagliano, F. P. and Paek, U.-C., Appl. Opt. 13, 274 (1974).CrossRefGoogle Scholar
3. Bhattacharya, D., Singh, R. K., and Holloway, P. H., J. Appl. Phys. 70, 5433 (1991).CrossRefGoogle Scholar
4. Mazhukin, V. I., Smurov, I., and Flamant, G., J. Appl. Phys. 78, 1259 (1995).CrossRefGoogle Scholar
5. Craciun, V., Amirhaghi, S., Craciun, D., Elders, J., Gardeniers, J. G. E., and Boyd, I. W., Appl. Surf. Sci. 86, 99 (1995).CrossRefGoogle Scholar
6. Craciun, V., Craciun, D., Bunescu, M. C., Dabu, R., and Boyd, I. W., Appl. Surf. Sci. 109/110, 354 (1997).CrossRefGoogle Scholar
7. Guillot-Noel, O., Roman, R.Gomez-San, Perriere, J., Hermann, J., Craciun, V., BoulmerLeborgne, C., Barboux, P., J. Appl. Phys. 80, 1803 (1996).CrossRefGoogle Scholar
8. Miotello, A. and Kelly, R., Appl. Phys. Lett. 67, 3535 (1995).CrossRefGoogle Scholar
9. Kelly, R. and Miotello, A., Appl. Surf. Sci. 96–98, 205 (1996).CrossRefGoogle Scholar
10. Bennett, T. D., Grigoropoulos, C. P., and Krajnovich, D. J., J. Appl. Phys. 77, 849 (1995).CrossRefGoogle Scholar
11. Allcock, G., Dyer, P. E., Elliner, G., and Snelling, H. V., J. Appl. Phys. 78, 7295 (1995).CrossRefGoogle Scholar
12. Zherikhin, A., Bagratashvili, V., Burimov, V., Sobol, E., Shubnii, Gh., and Sviridov, A., Physica C 198, 341 (1992).CrossRefGoogle Scholar
13. Singh, R. K., Fitz-Gerald, J. M., Nucl. Instr. and Meth. B 121, 363 (1997).CrossRefGoogle Scholar
14. Landolt-Bornstein New Series, Volume 17b, Ed. Madelung, O. (Springer Verlag, Berlin, Heidelberg, New York, 1982).Google Scholar
15. Takasuka, E., Tokizaki, E., Terashima, K., and Kimura, S., J. Appl. Phys. 82, 2590 (1997).CrossRefGoogle Scholar
16. Niedrig, R. and Bostanjoglo, O., J. Appl. Phys. 81, 480 (1997).CrossRefGoogle Scholar
17. Zhang, X., Chu, S. S., Ho, J. R., Grigoropoulos, C. P., Appl. Phys. A64, 545 (1997).CrossRefGoogle Scholar
18. Dat, R., Auciello, O., Lichtenwalner, D. J., and Kingon, A. I., J. Mater. Res. 11, 1514 (1996).CrossRefGoogle Scholar