Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6pznq Total loading time: 0.36 Render date: 2021-03-05T19:01:07.866Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Development of PLZT Film-on-Foil Capacitors with High Dielectric Strength

Published online by Cambridge University Press:  31 January 2011

Beihai Ma
Affiliation:
bma@anl.gov, Argonne National Laboratory, Argonne, Illinois, United States
Manoj Narayanan
Affiliation:
mnarayanan@anl.gov, Argonne National Laboratory, Argonne, Illinois, United States
U. Balachandran
Affiliation:
balu@anl.gov, Argonne National Laboratory, Argonne, Illinois, United States
Corresponding
Get access

Abstract

Ferroelectric film-on-foil capacitors hold special promise to replace discrete passive components in the development of electronic devices that require greater performance and smaller size. We have grown ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films on nickel substrates by chemical solution deposition. The dielectric properties were determined for samples of ≈1.15-μm-thick PLZT film grown on LaNiO3-buffered nickel substrates. Measurements on these samples yielded a dielectric constant of ≈1300, dielectric loss (tan δ) of ≈0.05, and leakage current density of ≈7 × 10-9 A/cm2. An energy density of ≈74 J/cm3 was measured at room temperature with 250-μm-diameter capacitors. Highly accelerated lifetime tests were conducted at 100°C to determine the reliability of the ≈1.15-μm-thick film-on-foil capacitors under field stress conditions (with applied electric field from 8.7 × 105 V/cm to 1.3 × 106 V/cm). The breakdown behavior of the PLZT film-on-foil capacitors was evaluated by Weibull analysis. A voltage acceleration factor of ≈-6.3 was obtained. From the test results, a mean time to failure of >3000 hr was projected for capacitors operated at 100°C with ≈2.6 × 105 V/cm dc electric field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Haertling, G. H. and Land, C. E., J. Am. Ceram. Sci. 54 (1971) 111.CrossRefGoogle Scholar
2 Zhu, Y., Zhu, J., Song, Y. J., and Desu, S. B., Appl. Phys. Lett. 73 (1998) 19581960.CrossRefGoogle Scholar
3 Uchiyama, K., Kasamatsu, A., Otani, Y., and Shiosaki, T., Jap. J. App. Phys. 46 (2007) L244246.CrossRefGoogle Scholar
4 Guttler, B., Bismayer, U., Groves, P., and Salje, E., Semicond. Sci. Technol. 10 (1995) 245248.CrossRefGoogle Scholar
5 Ma, B., Kwon, D. K., Narayanan, M., and Balachandran, U., J. Electroceram. 22 (2009) 383389.CrossRefGoogle Scholar
6 Ma, B., Kwon, D. K., Narayanan, M., and Balachandran, U., Mater. Lett. 62 (2008) 35733575.CrossRefGoogle Scholar
7 Kandasamy, S., Ghantasala, M. K., Holland, A., Li, Y. X., Bliznyuk, V., Wlodarski, W., and Mitchell, A., Mater. Lett. 62 (2008) 370373.CrossRefGoogle Scholar
8 Ihlefeld, J., Laughlin, B., A. Hunt-Lowery, Borland, W., Kingon, A., and Maria, J. P., J. Electroceram. 14 (2005) 95102.CrossRefGoogle Scholar
9 Kingon, A. I. and Srinivasan, S., Nature Mater. 4 (2005) 233237.CrossRefGoogle Scholar
10 Zhao, H.-J., Ren, T.-L., Zhang, N.-X., Zuo, R.-Z., Wang, X.-H., Liu, L.-T., Li, Z.-J., Gui, Z.-L., and Li, L.-T., Mater. Sci. Eng. B99 (2003) 195198.CrossRefGoogle Scholar
11 Kong, L. B. and Ma, J., Mater. Lett. 56 (2002) 3037.CrossRefGoogle Scholar
12 Seveno, R., Gundel, H. W., and Seifert, S., Appl. Phys. Lett. 79 (2001) 42044206.CrossRefGoogle Scholar
13 Polcawich, R.G., Feng, C.-N., Kurtz, S., Perini, S., Moses, P.J., and Trolier-McKinstry, S. Intl. J. Microcircuits Electron. Pack. 23 (2000) 8591.Google Scholar
14 Ma, B., Narayanan, M., and Balachandran, U., Mater. Lett. 63 (2009) 13531356.CrossRefGoogle Scholar
15 Narayanan, M., Ma, B., and Balachandran, U., Mater. Lett. 64 (2010) 2224.CrossRefGoogle Scholar
16 Balachandran, U., Kwon, D. K., Narayanan, M., and Ma, B., J. Europ. Ceram. Soc., 30 (2010) 365368.CrossRefGoogle Scholar
17 Zou, Q., Ruda, H. E., and Yacobi, B. G., Appl. Phys. Lett. 78 (2001) 12821284.CrossRefGoogle Scholar
18 Jonscher, K., Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London (1983).Google Scholar
19 Chen, J., He, L., Che, L., and Meng, Z., Thin Solid Films 515 (2006) 23982402.CrossRefGoogle Scholar
20 Weibull, W., J. Appl. Mech. 18 (1951) 293297.Google Scholar
21 Dissado, L. A., J. Phys. D: Appl. Phys. 23 (1990) 15821591.CrossRefGoogle Scholar
22See, for example, Smith, D. J., Reliability, Maintainability and Risk: Practical Methods for Engineers, Newnes (2001).Google Scholar
23 Munikoti, R. and Dhar, P., IEEE Trans. on Components, Hybrids, and Manufacturing Technology 11 (1988) 342345.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Development of PLZT Film-on-Foil Capacitors with High Dielectric Strength
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Development of PLZT Film-on-Foil Capacitors with High Dielectric Strength
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Development of PLZT Film-on-Foil Capacitors with High Dielectric Strength
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *