Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6f8dk Total loading time: 0.246 Render date: 2021-03-05T05:26:05.004Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Density Functional Study of Benzoic Acid Derivatives Modified SnO2 (110) Surface

Published online by Cambridge University Press:  14 January 2014

Tegshjargal Khishigjargal
Affiliation:
Department of Chemistry, Graduate School of Engineering, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
Kazuyoshi Ueda
Affiliation:
Department of Chemistry, Graduate School of Engineering, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
Corresponding
Get access

Abstract

Tin oxide is one of the popular metal oxide semiconductor used in solar cells, sensors, and catalysts. The surface modification by organic self assembled monolayer is one of the promising techniques to tune and to control the surface work function. In our study, we investigated the work function change of the SnO2 (110) surface which was modified with various benzoic acids derivatives using density functional theory (DFT). All calculations were carried out on Quantum Espresso program. Electron correlation and exchange parts were treated by local density (LDA), generalized gradient approximation (GGA) with Hubbard U term. To improve band structure calculation we used LDA+U method. The results of the calculation with LDA method indicated that the work functions of the pure and modified surface of SnO2 (110) with -C6H4-COOH molecule were calculated to be 7.40 eV and 6.18 eV, respectively. As the experimental value of work function of SnO2 (110) surface is about 7.74 eV, the results of the DFT calculation for pure SnO2 (110) surface modification by benzoic acid derivatives are in good agreement with the experimental.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Munnix, S. and Schmeits, M., Phys. Rev. B 27, 7624 (1983).CrossRef
Manassidis, I., Goniakowski, J., Kantorovich, L.N., Gillan, M.J., Surf. Sci. 339, 258 (1995).CrossRef
Mäki-Jaskari, M.A., Rantala, T.T., Phys. Rev. B 65, 245428 (2002).10.1103/PhysRevB.65.245428CrossRef
Rantala, T.T., Rantala, T.S., Lantto, V., Surf. Sci. 420, 103 (1999).CrossRef
Oviedo, J., Gillan, M.J., Surf. Sci. 463, 93 (2000).CrossRef
Ramamoorthy, M., Vanderbilt, D., King-Smith, R.D., Phys. Rev. B 49, 16721 (1994).CrossRef
Bates, S.P., Gillan, M.J., Kresse, G., J. Phys. Chem. B 102, 2017 (1998)CrossRef
Calatayud, M., Andrés, J., and Beltrán, A., Surf. Sci. 430, 213 (1999).CrossRef
Yamaguchi, Y., Tabata, K., Yashima, T., J. Mol. Str: THEOCHEM 714, 221 (2005).CrossRef
Batzil, M. and Diebold, U., Prog. Surf. Sci. 79, 47 (2005).10.1016/j.progsurf.2005.09.002CrossRef
Henrich, V.E., Cox, P.A., The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, (1994).
Viitala, M., Cramariuc, O., Rantala, T. T., and Golovanov, V., Surf. Sci. 602, 3038 (2008).CrossRef
Wen, Z., Tian-mo, L., and Xiao-fei, L., Physica B 405, 3458 (2010).CrossRef
Melle-Franco, M. and Pacchioni, G., Surf. Sci. 461, 54 (2000).CrossRef
Duan, Y., Phys. Rev. B 77, 045332 (2008).CrossRef
Fujihara, M., Ohishi, N., and Osa, T., Nature 268, 226.CrossRef
Ganzorig, C. and Fujihara, M., “Chemically Modified Oxide Electrodes. Encyclopedia of Electrochemistry,” (Wiley-VCH Verlag GmbH & Co. KGaA, 2007).CrossRef
Ganzorig, Ch., Kwak, K.-J., Yagi, K., and Fujihira, M., Appl. Phys. Lett. 79, 272 (2001).CrossRef
Carrara, M., Nüesch, F. and Zuppiroli, L., Synth. Met. 121, 1633 (2001).CrossRef
Nüesch, F., Rotzinger, F., Si-Ahmed, L. and Zuppiroli, L., Chem. Phys. Lett. 288, 861 (1998).CrossRef
Appleyard, S. F. J., Day, S. R., Pickford, R. D. and Willis, M. R., J. Mater. Chem. 10, 169 (2000).10.1039/a903708jCrossRef
Khishigjargal, T., Javkhlantugs, N., Ganzorig, C., Kurihara, Y., Sakomura, M., Ueda, K., World Journal of Nano Science and Engineering 3, 5256 (2013).CrossRef
Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).CrossRef
Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).CrossRef
Blochl, P.E., Phys. Rev. B 50, 17953 (1994).CrossRef
Perdew, J.P. and Zunger, A.. Phys. Rev. B 23, 5048 (1981).CrossRef
Anisimov, V. I., Zaanen, J., and Andersen, O.K., Phys. Rev. B 44, 943 (1991).CrossRef
Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyżyk, M.T. and Sawatzky, G.A., Phys. Rev. B 48, 16929 (1993).CrossRef
Liechtenstein, A.I., Anisimov, V.I., and Zaanen, J., Phys. Rev. B. 52, R5467 (1994).CrossRef
Cococcioni, M. and de Gironcoli, S., Phys. Rev. B 71, 035105 (2005).CrossRef
Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRef
Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).CrossRef
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., Gironcoli, Stefano de, Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., and Wentzcovitch, R. M., J. Phys.: Conden. Matt. 21, 395502 (2009).
Bengtsson, L., Phys. Rev. B 59, 12301 (1999).CrossRef
Monkhorst, H.J. and Pack, J.D., Phys. Rev. B 13, 5188 (1976).CrossRef
Godin, T.J. and LaFemina, J.P., Phys. Rev. B 47, 6518 (1993)..CrossRef
Goniakowski, J., Holender, J. M., Kantorovich, L. N., and Gillan, M. J., Phys. Rev. B 53, 957 (1996).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Density Functional Study of Benzoic Acid Derivatives Modified SnO2 (110) Surface
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Density Functional Study of Benzoic Acid Derivatives Modified SnO2 (110) Surface
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Density Functional Study of Benzoic Acid Derivatives Modified SnO2 (110) Surface
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *