Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-z4vvc Total loading time: 0.526 Render date: 2021-02-26T05:15:09.777Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Defects and Diffusion in Silicon: An Overview

Published online by Cambridge University Press:  10 February 2011

N.E.B. Cowern
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
G. Mannino
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
P.A. Stolk
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
M.J.J. Theunissen
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Get access

Abstract

At the current pace of semiconductor technology development, transistor dimensions in advanced IC products will approach the range of a few tens of nanometers within the next decade. This presents a major challenge for our understanding of defects and diffusion in these tiny devices during processing. In response, an almost explosive growth in research on process physics has taken place at universities, national institutes and industry research labs worldwide. The central issue is the phenomenon of nonequilibrium diffusion driven by processing steps such as oxide growth, high concentration gradients of impurities, and annealing of damage caused by ion implantation. Nonequilibrium diffusion arises from perturbations to the natural thermal equilibrium concentrations of point defects - interstitial atoms and vacancies - in the silicon crystal. This paper gives a snapshot of our current understanding of the atomic-scale interactions between point defects and impurity atoms, extended defects and interfaces, as revealed by recent experimental and theoretical studies. The paper emphasizes the important role played by defect cluster ripening during transient enhanced diffusion and dopant activation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys. 61, 289 (1989).CrossRefGoogle Scholar
[2] Hu, S.M., Materials Science and Engineering R 13, 105 (1994).CrossRefGoogle Scholar
[3] Ural, A., Griffin, P.B., and Plummer, J.D., J. Apl. Phys. 85, 6440 (1999).CrossRefGoogle Scholar
[4] Bracht, H., Hailer, E.E., and Clark-Phelps, R., Phys. Rev. Lett. 81, 393 (1998).CrossRefGoogle Scholar
[5] Recent ab initio calculations suggest that for the important case of B diffusion, the migrating species is the B-I pair (Sadigh, B., Lenosky, T.J., Theiss, S.K., Caturla, M.-J., Rubia, T. Diaz de la, and Foad, M.A.; unpublished).Google Scholar
[6] Cowern, N.E.B., Janssen, K.T.F., Walle, G.F.A. van de, and Gravesteijn, D.J., Phys. Rev. Lett. 65, 2434 (1990).CrossRefGoogle Scholar
[7] Cowem, N.E.B., Walle, G.F.A. van de, Gravesteijn, D.J., and Vriezema, C.J., Phys. Rev. Lett. 67, 212 (1991).Google Scholar
[8] Cowern, N.E.B., Mannino, G., Stolk, P.A., Roozeboom, F., Huizing, H.G.A., Berkum, J.G.M. van, Cristiano, F., Claverie, A., and Jaraiz, M., Phys. Rev. Lett. 82, 4460 (1999).CrossRefGoogle Scholar
[9] Fair, R.B., in Impurity Doping Processes in Silicon, edited by Wang, F.F.Y. (North-Holland, Amsterdam, 1991), page 315.Google Scholar
[10] Bracht, H., Stolwijk, N.A., and Mehrer, H., Phys. Rev. B 52, 16542 (1995).CrossRefGoogle Scholar
[11] Bork, I. and Schwerin, A. v., Mat. Res. Soc. Symp. Proc. 532, 29 (1998).CrossRefGoogle Scholar
[12] Larsen, A. Nylandsted, Larsen, K. Kyllesbech, Andersen, P.E., and Svensson, B.G., J. Appl. Phys. 73, 691 (1993).CrossRefGoogle Scholar
[13] Scholtz, R., Gésele, U., Huh, J.Y, and Tan, T.Y, Appl. Phys. Lett. 72, 200 (1998).CrossRefGoogle Scholar
[14] Agarwal, A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Haynes, T.E., Jackson, J., Erokhin, Yu.E., and Poate, J.M., Proc. 4th Int. Workshop on Measurement, Characterization and Modeling of Ultra-Shallow Doping Profiles in Semiconductors (Research Triangle Park, North Carolina, 1997).Google Scholar
[15] Agarwal, A., Gossmann, H.-J., Eaglesham, D.J., Hemer, S.B., Fiory, A.T., and Haynes, T.E., Appl. Phys. Lett. 74, 2435 (1999); A. Agarwal, H.-J. Gossmann, and D.J. Eaglesham, Appl. Phys. Lett. 74, 2331 (1999).CrossRefGoogle Scholar
[16] Dunham, S.T., Chakravathi, S., and Gencer, A.H., Proc. International Electron Devices Meeting (San Francisco, CA, 6–9 Dec., 1998).Google Scholar
[17] Cowem, N.E.B., Theunissen, M.J.J., Roozeboom, F., and Berkum, J.G.M. van, Appl. Phys. Lett. (in press).Google Scholar
[18] TSUPREM4 User Manual (Avant! TCAD Business Unit, CA, 1998).Google Scholar
[19] Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S., and Haynes, T.E., J. Appl. Phys. 81, 6031 (1997).CrossRefGoogle Scholar
[20] Claverie, A., Assayag, G. Ben, Bonafos, C., Cristiano, F., Colombeau, B., Omri, M., and Mauduit, B. de, submitted to Materials Science in Semiconductor Engineering; A. Claverie, these Proceedings.Google Scholar
[21] Kohyama, M. and Takeda, S., Phys. Rev. B 46, 12305 (1992); ibid., Phys. Rev. B 51, 13111 (1995).CrossRefGoogle Scholar
[22] Eaglesham, D.J., Stolk, P.A., Gossmann, H.-J., and Poate, J.M., Appl. Phys. Lett. 65, 2305 (1994).CrossRefGoogle Scholar
[23] Cowem, N.E.B., Walle, G.F.A. van de, Zalm, P.C., and Vandenhoudt, D.W.E., Appl. Phys. Lett. 65, 2981 (1994).Google Scholar
[24] Huizing, H.G.A., Visser, C.C.G., Cowern, N.E.B., Stolk, P.A., and Kruif, R.C.M. de, Appl. Phys. Lett. 69, 1211 (1996).CrossRefGoogle Scholar
[25] Chao, H.S., Griffin, P.B., Plummer, J.D. and Rafferty, C.S., Appl. Phys. Lett. 69, 2113 (1996).CrossRefGoogle Scholar
[26] Li, Jinghong and Jones, K.S., Appl. Phys. Lett. 73, 3748 (1998).CrossRefGoogle Scholar
[27] Lee, Y.H., Appl. Phys. Lett. 73, 1119 (1998).CrossRefGoogle Scholar
[28] Arai, N., Takeda, S., and Kohyama, M., Phys. Rev. Lett. 78, 4265 (1997).CrossRefGoogle Scholar
[29] Benton, J.L., Halliburton, K., Libertino, S., Eaglesham, D.J., and Coffa, S., J. Appl. Phys. 84, 4749 (1998).CrossRefGoogle Scholar
[30] Mannino, G., Cowem, N.E.B., Stolk, P.A., Huizing, H.G.A., Roozeboom, F., Berkum, J.G.M. van, Boer, W. de, Claverie, A., Cristiona, F., and Jaraiz, M. (these Proceedings).Google Scholar
[31] Jaraiz, M., Pelaz, L., Rubio, E., Barbolla, J., Gilmer, G.H., Eaglesham, D.J., Gossmann, H.J., and Poate, J.M., Mat. Res. Soc. Symp. Proc. 532, 43 (1998).CrossRefGoogle Scholar
[32] Cuendet, N., Halicioglu, T., and Tiller, W.A., Appl. Phys. Lett. 68, 19 (1996).CrossRefGoogle Scholar
[33] Magna, A. La, Coffa, S., and Libertino, S., in ‘Silicon Front-End Technology: Materials Processing and Modeling’, MRS Spring Meeting, San Francisco, 1999, paper S5.4.Google Scholar
[34] Pelaz, L., Jaraiz, M., Gilmer, G.H., Gossmann, H.-J., Rafferty, C.S., Eaglesham, D.J., and Poate, J.M., Appl. Phys. Lett. 70, 2285 (1997).CrossRefGoogle Scholar
[35] Caturla, M.J., Johnson, M.D., and Rubia, T. Diaz de la, Appl. Phys. Lett. 72, 2736 (1998).CrossRefGoogle Scholar
[36] Rousseau, P.M., Griffin, P.B., Fang, W.T., and Plummer, J.D., J. Appl. Phys. 84, 3593 (1998).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Defects and Diffusion in Silicon: An Overview
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Defects and Diffusion in Silicon: An Overview
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Defects and Diffusion in Silicon: An Overview
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *