Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-prt4h Total loading time: 0.13 Render date: 2021-10-16T00:19:57.939Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Damage and Failure Mechanisms in High Pressure Silicon-Glass-Metal Microfluidic Connections

Published online by Cambridge University Press:  01 February 2011

Dong-Jin Shim
Affiliation:
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
Hong-Wei Sun
Affiliation:
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
Srikar T. Vengallatore
Affiliation:
Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street, W. Montreal, Quebec, Canada H3A 2K6
S. Mark Spearing
Affiliation:
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
Get access

Abstract

The characteristics and mechanisms of damage and failure in microfluidic joints consisting of Kovar metal tubes attached to silicon using borosilicate glass seals have been investigated. These joints are representative of seals for the MIT microrocket which is a silicon-based MEMS device. A key concern in such joints is the occurrence of cracks in silicon and glass due to residual stresses caused by a large thermal excursion during processing and the dissimilar coefficients of thermal expansion of the constituent materials. Joints with two types of glass compositions and joint configurations were fabricated, tested, and inspected. Axial tension tests were performed to investigate load carrying capability and the effect of thermally-induced cracks. Finite element models were used to obtain residual stresses due to the fabrication, and the location of the cracks from the experiments were found to coincide with the locations of the maximum principal stresses. The current work shows that the certain types of thermally-induced cracks are more detrimental to joint strength than others and a good bond between the Kovar tube and the silicon sidewall can help increase joint strength via shear load transfer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Epstein, A. and Senturia, S.D., “Macro Power from Micro Machines”, Science, 276, 1211, 1997.CrossRefGoogle Scholar
2. London, A.P., Ayon, A.A., Epstein, A., Spearing, S.M., Harrison, T., Peles, Y., and Kerrebrock, J.L., “Microfabrication of a high pressure bipropellant rocket engine”, Sensors and Actuators A, 92, 351357, 2001.CrossRefGoogle Scholar
3. Donald, I.W., “Preparation, properties and chemistry of glass and glass-ceramic-to-metal seals and coatings”, Journal of Materials Science, 28, 28412886, 1993.CrossRefGoogle Scholar
4. Peles, Y., Srikar, V.T., Harrison, T., Protz, C., Mracek, A., and Spearing, S M., “Fluidic packaging of microengine and microrocket devices for high pressure and high temperature operation”, Journal of Microelectromechanical Systems, to appear Feb. 2004.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Damage and Failure Mechanisms in High Pressure Silicon-Glass-Metal Microfluidic Connections
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Damage and Failure Mechanisms in High Pressure Silicon-Glass-Metal Microfluidic Connections
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Damage and Failure Mechanisms in High Pressure Silicon-Glass-Metal Microfluidic Connections
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *