Skip to main content Accessibility help
×
Home

Crystallographic Texture Characterization of Inlaid Copper Interconnects

Published online by Cambridge University Press:  21 March 2011

Inka Zienert
Affiliation:
Materials Analysis Department, AMD Saxony Manufacturing Dresden, Germany
Paul Besser
Affiliation:
Technology Development Group, Advanced Micro Devices, Sunnyvale, CA, USA
Werner Blum
Affiliation:
Materials Analysis Department, AMD Saxony Manufacturing Dresden, Germany
Ehrenfried Zschech
Affiliation:
Materials Analysis Department, AMD Saxony Manufacturing Dresden, Germany
Get access

Extract

Developing faster integrated circuits places incredible demands on the interconnect system. The smaller feature sizes lead to excessive current densities, which in turn make the interconnect lines more susceptible to electromigration (EM) failure.[1] Studies have shown that EM performance can be improved by increasing the strength of the {111} texture in conventionally- fabricated aluminum-based lines.[2-6] The strong {111} texture minimizes the presence of high- angle grain boundaries along the interconnect line, thus minimizing a fast-diffusion path for EM mass transport.[2-4,7-12]

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Kwok, T., Metallization: Performance and reliability Issues for VLSI and ULSI, Vol. 1596, 6071 (1991)CrossRefGoogle Scholar
2. Vaidya, S. and Sinha, A.K., Thin Solid Films, Vol. 75, 1981, p. 253.CrossRefGoogle Scholar
3. Campbell, A.N., Mikawa, R.E., and Knorr, D.B., J. Electron. Mater. Vol. 22, 589 (1993).CrossRefGoogle Scholar
4. Toyoda, H., Kawanoue, T., Hasunuma, M., Kaneko, H., and Miyauchi, M., IEEE International Reliability Phys. Symp Proc, 178 (1994).Google Scholar
5. Kageyama, M., Abe, K., Harada, Y. and Onoda, H., Mater. Res. Soc., 91 (1998)Google Scholar
6. Gross, M.E.et al., Mat. Res. Soc. Symp. Proc Vol. 514, 293 (1998)CrossRefGoogle Scholar
7. Rodbell, K.P, Hurd, J.L., and DeHaven, P.W., Mat. Res. Soc. Symp. Proc Vol. 403, 617 (1996).CrossRefGoogle Scholar
8. Knorr, D.B., Tracy, D.P, and Rodbell, K.P., Applied Physics Letters 59, 3241 (1991).CrossRefGoogle Scholar
9. Knorr, D.B., Rodbell, K.P, Journal of Applied Physics 79, 2409 (1996).CrossRefGoogle Scholar
10. Abe, K., , Y.Harada, and Onoda, H., 36th Annual Reliability Physics Symposium, 342 (1998).Google Scholar
11. Kageyama, M., , K.Abe, Harada, Y., and Onoda, H., Mat. Res. Soc. Symp. Proc Vol. 514, 91 (1998).CrossRefGoogle Scholar
12. Ryu, C., Loke, A.L.S., Nogami, T., and Wong, S., Proc. of the IEEE Int.Rel. Physics Symp, 201 (1997).Google Scholar
13. Zhang, X., , H.Solak, Cerrina, F., Lai, B., Cai, Z., , P.Ilinski, Legnini, D. and Rodrigues, W., Appl. Phys. Lett., 76(3) 315 (2000)CrossRefGoogle Scholar
14. Beruschi, P., , C.Ciofo, Dattilo, V., , A.Diligenti, Nannini, A. and Neri, B., J. Electron Mater., 26(8) L17–L20 (1997)CrossRefGoogle Scholar
15. Zielinski, E.M., Vinci, R.P. and Bravman, J.C., J. Electron Mater., 24(10) 1485 (1995).CrossRefGoogle Scholar
16. Harper, J.M.E. and Rodbell, K.P., J.Vac. Sci. Technol. B 15(4), 763 (1997).CrossRefGoogle Scholar
17. Vanasupa, L., Joo, Y. C., Besser, P. R., , S.Pramanick, Journal of Applied Physics 85(5) 2583 (1999).CrossRefGoogle Scholar
18. Besser, P. R.et al., “Microstructural characterization of inlaid Cu inteconnect lines,” To be published in J. Electronic Mater. (April 2001).Google Scholar
19. Lingk, C., Gross, M. E., Brown, W. L., , T.Siegrist, Coleman, E., Lai, W. Y. C., Miner, J. F., , T.Ritzdorf, Turner, J., , J.Gibbons, Klawuhn, E., , G.Wu, Zhang, F., Proc. AMC Conf, 73 (1998).Google Scholar
20. Lingk, C., Gross, M. E., Brown, W. L., Applied Physics Letters 74(5) (1999).CrossRefGoogle Scholar
21. Dominguez, J., Microstructure evolution of electrodeposited copper films and damscene trenches. Masters' Thesis at University of Michigan (2000).Google Scholar
22. Besser, P.R., Marathe, A., , L.Zhao, Herrick, M., , C.Capasso, and Kawasaki, H., IEEE Int. Electron Devices Meeting Digest, 119 (2000).Google Scholar
23. Hu, C.K., Malhotra, S.G, and Gignac, L., Electrochemical Soc. Proceedings Vol. 99–31, 206 (1999).Google Scholar
24. Rathore, H.S., Nguyen, D.B, Agarwala, B., Wachnik, R.A., and Procter, R.W., Electorchemical Soc. Proceedings Vol. 99–31, 190 (1999).Google Scholar
25. Proost, J., Hirato, T., Furuhara, T., , K.Maex, and Cells, J.-P., J. Appl. Phys. 87(6) 2792 (2000).CrossRefGoogle Scholar
26. McBrayer, J.D., Swanson, R.M. and Sigmon, T.W., J. Electrochem. Soc., Vol. 133, 1242 (1986).CrossRefGoogle Scholar
27. Kawasaki, H., Short Course on Reliability characterization methods for VLSI interconnects, SSDM, (1999).Google Scholar
28. Besser, P. R., Sanchez, J. E., Field, D., Pramanick, S., Sahota, K., Mat. Res. Soc. Symp. Proc. 473, 217 (1997).CrossRefGoogle Scholar
29. Besser, P. R., Sanchez, J. E., Field, D. P, Proc. Advanced Metallization and Interconnect Systems for ULSI Applications 1996, 89 (1997).Google Scholar
30. Vanasupa, L.et al., Electro. and Solid-State Letters, 2 (6), 275 (1999).CrossRefGoogle Scholar
31. Gross, M.E., Lingk, C., Brown, W.L. and Drese, R., Solid State Technol., 47 (1999).Google Scholar
32. Tracy, D.P., Knorr, D.B. and Rodbell, K.P., J. Appl. Phys. 76, 2671 (1994).CrossRefGoogle Scholar
33. Harper, J.M.E. and Rodbell, K.P., J. Vac. Sci. Technol.B, Vol. 15, 763 (1997).CrossRefGoogle Scholar
34. Zschech, E., Blum, W., , I.Zienert, Besser, P. R., Submitted to Zeitschr. f. Metallkunde (2001).Google Scholar
35. Sanchez, J. E., Besser, P. R., Proc. IITC, 233 (1998).Google Scholar
36. Zienert, I., Blum, W., Zschech, E., Ullrich, H.-J. and Besser, P., Proc. Materials for Adv. Metal. Conf. (2001)Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-7fh6l Total loading time: 0.228 Render date: 2021-01-23T02:35:10.846Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Crystallographic Texture Characterization of Inlaid Copper Interconnects
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Crystallographic Texture Characterization of Inlaid Copper Interconnects
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Crystallographic Texture Characterization of Inlaid Copper Interconnects
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *