Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T23:40:55.044Z Has data issue: false hasContentIssue false

Controlled Growth and Electronic Properties of Gallium Nitride Nanowires

Published online by Cambridge University Press:  15 February 2011

Song Han
Affiliation:
Department of Electrical Engineering – ElectrophysicsUniversity of Southern California Los Angeles, CA 90089 – 0271
Wu Jin
Affiliation:
Department of Electrical Engineering – ElectrophysicsUniversity of Southern California Los Angeles, CA 90089 – 0271
Tao Tang
Affiliation:
Department of Electrical Engineering – ElectrophysicsUniversity of Southern California Los Angeles, CA 90089 – 0271
Chao Li
Affiliation:
Department of Electrical Engineering – ElectrophysicsUniversity of Southern California Los Angeles, CA 90089 – 0271
Daihua Zhang
Affiliation:
Department of Electrical Engineering – ElectrophysicsUniversity of Southern California Los Angeles, CA 90089 – 0271
Xiaolei Liu
Affiliation:
Department of Electrical Engineering – ElectrophysicsUniversity of Southern California Los Angeles, CA 90089 – 0271
Chongwu Zhou
Affiliation:
Department of Electrical Engineering – ElectrophysicsUniversity of Southern California Los Angeles, CA 90089 – 0271
Get access

Abstract

High-quality single crystalline gallium nitride (GaN) nanowires are synthesized via a chemical vapor deposition (CVD) method using gold nanoparticles as the catalyst. This method enables control over several important aspects of the growth, including control of the nanowire diameter by using mono-dispersed gold clusters, control of the nanowire location via e-beam patterning of the catalyst sites, and control of the nanowire orientation via epitaxial growth on aplane sapphire substrates. Transport properties of these GaN nanowires are studied. Our work opens up new ways to use GaN nanowires as nano-building blocks.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Morkoc, H., “Nitride Semiconductors and Devices”, Springer Verlag, Heidelberg 1999.Google Scholar
[2] Nakamura, S., Science 281 (1998) 956.Google Scholar
[3] Choa, F., Fan, J., Liu, P., Appl. Phys. Lett. 69 (1996) 3668.Google Scholar
[4] Nakamura, S.,Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Sugimoto, Y.,Kikoyu, H., Jpn. J. Appl. Phys. Part 2 36 (1997) L1059.Google Scholar
[5] Chamard, V., Metzger, T., Bellet-Amalric, E., Daudin, B., Adelmann, C., Mariette, H., Mula, G., Appl. Phys. Lett. 79 (2001) 1971.Google Scholar
[6] Tran, C., Osinski, A., Karlicek, R., Berishev, I., Appl. Phys. Lett. 75 (1999) 1494.Google Scholar
[7] Xiao, R., Liao, H., Cue, N., Sun, X.,Kwok, H., J. Appl. Phys. 80 (1996) 4226.Google Scholar
[8] Xie, Y., Qian, Y., Wang, W., Zhang, S.,Zhang, Y., Science 272 (1996) 1926.Google Scholar
[9] Huang, Y., Duan, X., Cui, Y., Lieber, C., Nano Letters 2 (2002) 101.Google Scholar
[10] Duan, X., Lieber, C., J. Am. Chem. Soc. 122 (2000) 188.Google Scholar
[11] Shi, W., Zheng, Y., Wang, N., Lee, C., Lee, S., Adv. Mater. 13 (2001) 591.Google Scholar
[12] Chen, C., Yeh, C., Adv. Mater. 12 (2000) 738.Google Scholar
[13] Chen, C.C., Yeh, C.H., Chen, C.H.,Yu, M., Liu, H., Wu, J., Chen, K.H., Chen, L.C., Peng, J., Chen, Y.F., J. Am. Chem. Soc. 123 (2001) 2791.Google Scholar
[14] Alivisatos, A., Science 271 (1996) 933.Google Scholar
[15] Gudiksen, M., Wang, J., Lieber, C., J. Phys. Chem. B 106 (2002) 4036.Google Scholar
[16] Cui, Y., Lauhon, L., Gudiksen, M., Wang, J., Lieber, C., Appl. Phys. Lett. 78 (2001) 2214.Google Scholar
[17] Kong, J., Soh, H.,Cassell, A., Quate, C., Dai, H., Nature 395 (1998) 878.Google Scholar
[18] Huang, M., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P., Science 292 (2001) 1897.Google Scholar
[19] Kim, J.R., So, H.M., Park, J.W., Kim, J.J., Kim, J., Lee, C.J., Lyu, S.C., Appl. Phys. Lett. 80 (2002) 3548.Google Scholar