Hostname: page-component-5db6c4db9b-fdz9p Total loading time: 0 Render date: 2023-03-24T20:19:43.867Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Controlled deposition of wedge-shaped profiles for thin (∼10Å) layers by pulsed laser deposition

Published online by Cambridge University Press:  01 February 2011

H.M. Christen
Oak Ridge National Laboratory, Condensed Matter Sciences Division, Oak Ridge, Tennessee, 37831–6056
I. Ohkubo
Oak Ridge National Laboratory, Condensed Matter Sciences Division, Oak Ridge, Tennessee, 37831–6056
Get access


A method yielding precisely controlled thickness profiles in thin-film growth is necessary for continuous compositional spread techniques. While multiple approaches have been introduced and successfully tested, some specific applications require the use of very thin “wedge”-type profiles (∼10 Å at the thickest point), while at the same time yielding lateral sample sizes of several centimeters. Here we introduce the basic principles of a pulsed-laser deposition based approach utilizing the translation of the substrate behind a slit-shaped aperture and demonstrate by simple calculations that this method can satisfy these requirements.

Research Article
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1 Kennedy, K., Atomic Energy Commission Report UCRL-16393, Sept. 1965.Google Scholar
2 Hanak, J.J., J. Mat. Sci. 5, 964 (1970)CrossRefGoogle Scholar
3 van Dover, R.B., Schneemeyer, L.F., and Fleming, R.M., Nature 392, 162 (1998).Google Scholar
4 Perkins, J.D., del Cueto, J.A., Alleman, J.L., Warmsingh, C., Keyes, B.M., Gedvilas, L.M., Parilla, P.A., To, B., Readey, D.W., and Ginley, D.S., Thin Solid Films 411, 152 (2002).Google Scholar
5 Schenck, P.K. and Kaiser, D.L., Proceedings of the Knowledge Foundation, COMBI 2002 (to be published).Google Scholar
6 Christen, H.M., Silliman, S.D., and Harshavardhan, K.S., Rev. Sci. Instrum. 72, 2673 (2001).CrossRefGoogle Scholar
7 Christen, H.M., Silliman, S.D., and Harshavardhan, K.S., Appl. Surf. Sci. 189, 216 (2002).CrossRefGoogle Scholar
8 Danielson, E., Golden, J.H., McFarland, E.W., Reaves, C.M., Weinberg, W.H., and Wu, X.D., Nature 389, 944 (1997).Google Scholar
9 Yoo, Y.K., Duewer, F., Yang, H., Yi, D., Li, J.-W., and Xiang, X.-D., Nature 406, 704 (2000).Google Scholar
10 Fukumura, T., Ohtani, M., Kawasaki, M., Okimoto, Y., Kageyama, T., Koida, T., Hasegawa, T., Tokura, Y., and Koinuma, H., Appl. Phys. Lett. 77, 3426 (2000).CrossRefGoogle Scholar
11 Christen, H.M., Rouleau, C.M., Ohkubo, I., Zhai, H.Y., Lee, H.N., Sathyamurthy, S., and Lowndes, D. H., Rev. Sci. Instrum. 74, 4058 (2003).CrossRefGoogle Scholar