Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T06:21:41.448Z Has data issue: false hasContentIssue false

Controllable growth of single walled CNTs using nanotemplates from diblock copolymers

Published online by Cambridge University Press:  01 February 2011

Jennifer Lu
Affiliation:
Agilent Technologies
Jia Bai
Affiliation:
Agilent Technologies
Nick Moll
Affiliation:
Agilent Technologies
Daniel Roitman
Affiliation:
Agilent Technologies
Dorothy Yang
Affiliation:
Agilent Technologies
Qiang Fu
Affiliation:
Duke University
Jie Liu
Affiliation:
Duke University
David Rider
Affiliation:
University of Toronto
Ian Manners
Affiliation:
University of Toronto
Mitch Winnik
Affiliation:
University of Toronto
Get access

Abstract

We use diblock copolymers as nanotemplates to produce various catalyst nanoclusters or catalyst-containing inorganic nanostructures with controlled size and spacing for carbon nanotube growth. We are able to generate periodically ordered catalytic nanostructures by spin coating polymer-based catalyst systems. As a result, uniformly distributed, low defect density single walled nanotubes(CNTs) have been obtained. CNTs with diameters of 1nm or less have been produced from iron-containing inorganic nanostructures using conventional chemical vapor deposition. The superior film forming ability of polymer-based catalyst systems enables selective growth of carbon nanotubes on lithographically predefined catalyst islands over a large surface area. The ability to control the density and location of CNTs offers great potential for practical applications. The initial MALDI-MS (Matrix Assisted Laser Desorption Ionization-Mass Spectrometry) results indicate that we can positively identify bovine serum albumin (BSA) at 500 attomoles using CNT surfaces produced by this method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Science 1999, 283, 512.Google Scholar
2. Tans, S. J.; Dekker, C. Nature 2000, 404, 834.Google Scholar
3. McEuen, P. L.; Fuhrer, M. S.; Park, H. K. IEEE Transactions on Nanotechnology 2002, 1, 78.Google Scholar
4. Hafner, J. H.; Cheung, C. L.; Woolley, A. T.; Lieber, C. M. Progress in Biophysics & Molecular Biology 2001, 77, 73.Google Scholar
5. Dai, H. J.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nature 1996, 384, 147.Google Scholar
6. Chen, R. J.; Choi, H. C.; Bangsaruntip, S.; Yenilmez, E.; Tang, X. W.; Wang, Q.; Chang, Y. L.; Dai, H. J. Journal of the American Chemical Society 2004, 126, 1563.Google Scholar
7. Choi, H. C.; Kim, W.; Wang, D. W.; Dai, H. J., Journal of Physical Chemistry B 2002, 106, 1 2361.Google Scholar
8. Temple, K.; Kulbaba, K.; Power-Billard, K. N.; Manners, I.; Leach, K. A.; Xu, T.; Russell, T. P.; Hawker, C. J. Advanced Materials 2003, 15, 297.Google Scholar
9. Fu, Q.; Huang, S. M.; Liu, J. Journal of Physical Chemistry B 2004, 108, 6124.Google Scholar
10. Tans, S. J.; Dekker, C. Nature 2000, 404, 834 Google Scholar
11. Dresselhaus, M. S.; Eklund, P. C. Advances in Physics 2000, 49, 705.Google Scholar