Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-66nw2 Total loading time: 0.209 Render date: 2021-11-29T20:11:34.983Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Construction of Spherical Assembly of Gold Nanoparticles Using Tetra[(methylthio)methyl] silane as Ligand

Published online by Cambridge University Press:  11 February 2011

Mathew M. Maye
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
I-Im S. Lim
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Jin Luo
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Li Han
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Daniel Rabinovich
Affiliation:
Department of Chemistry, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223.
Sandy Chen
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Michael P. Maye
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Chuan-Jian Zhong
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Get access

Abstract

This paper reports a study on the assembly of gold nanoparticles via a tetradentate organosulfur ligand, tetra[(methylthio)methyl] silane. We have characterized the evolution of the assembly from individual nanoparticles to spheres (30 ∼ 160 nm) of linked nanoparticles using UV-Visible, TEM, and AFM techniques. We have also demonstrated that the assemblies could be effectively disassembled via manipulating the ligand chemistry. Intriguing assembly-substrate interactions were observed, which could be related to interfacial hydrophobicity. Implications of these findings to the development of abilities in interfacial manipulation of the nanostructures are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Templeton, A.C., Wuelfing, W.P., Murray, R.W., Acc. Chem. Res., 33, 27. (2000)CrossRefGoogle Scholar
2 (a) Storhoff, J.J., Mirkin, C.A., Chem. Rev., 99, 1849 (1999).CrossRefGoogle Scholar
(b) Peng, X., Schlamp, M.C., Kadavanich, A.V., Alivisatos, A.P., J. Am. Chem. Soc., 119, 7019 (1997).CrossRefGoogle Scholar
(c) Mann, S., Shenton, W., Li, M., Connolly, S., Fitzmaurice, D., Adv. Mater., 12, 147 (2000).3.0.CO;2-U>CrossRefGoogle Scholar
3 (a) Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R., J. C. S. Chem. Commun., 801, (1994).CrossRefGoogle Scholar
(b) Fink, J., Kiely, C.J., Bethell, D., Schiffrin, D.J.. Chem. Mater., 10, 922 (1998).CrossRefGoogle Scholar
4 Hostetler, M.J., Wingate, J.E., Zhong, C.J., Harris, J.E., Vachet, R.W., Clark, M.R., Londono, J.D., Green, S.J., Stokes, J.J., Wignall, G.D., Glish, G. L., Porter, M.D., Evans, N.D., Murray, R.W., Langmuir, 14, 17. (1998).CrossRefGoogle Scholar
5 Shon, Y.S., Mazzitelli, C., Murray, R.W., Langmuir, 17, 7735, (2001).CrossRefGoogle Scholar
6 (a) Li, X.M., de Jong, M.R., Inoue, K., Shinkai, S., Huskens, J., Reinhoudt, D.N., J. Mater. Chem., 11, 1919 (2001).CrossRefGoogle Scholar
(b) Prins, L.J., Reinhoudt, D.N., Timmerman, P., Angew. Chem. Intl. Ed., 2383 (2001).Google Scholar
7 (a) Templeton, A.C., Hostetler, M.J., Kraft, C.T., Murray, R.W., J. Am. Chem. Soc., 120, 1906 (1998).CrossRefGoogle Scholar
(b) Ingram, R.S., Hostetler, M.J., Murray, R.W., J. Am. Chem. Soc., 119, 9175 (1997).CrossRefGoogle Scholar
(c) Hostetler, M.J., Templeton, A.C., Murray, R.W., Langmuir, 15, 3782 (1999).CrossRefGoogle Scholar
(d) Templeton, A.C., Hostetler, M.J., Warmoth, E.K., Chen, S., Hartshorn, C.M., Krishnamurthy, V.M., Forbes, M.D.E., Murray, R.W., J. Am. Chem. Soc. 120, 4845, (1998).CrossRefGoogle Scholar
8 (a) Bethell, D., Brust, M., Schiffrin, D.J., Kiely, C., J. Electroanal. Chem., 409, 137, (1996).CrossRefGoogle Scholar
(b) Brust, M., Bethell, D., Kiely, C.J., Schiffrin, D.J., Langmuir, 14, 5425 (1998).CrossRefGoogle Scholar
9 (a) Musick, M.D., Keating, C.D., Lyon, L.A., Botsko, S.L., Pena, D.J., Holliway, W.D., McEvoy, T.M., Richardson, J.N., Natan, M.J., Chem. Mater., 12, 2869, (2000).CrossRefGoogle Scholar
(c) Zamborini, F.P., Hicks, J.F., Murray, R.W., J. Am. Chem. Soc., 122, 4514, (2000).CrossRefGoogle Scholar
10 (a) Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L., Mirkin, C.A., Science, 277, 1078, (1997).CrossRefGoogle Scholar
(b) Mbindyo, J.K.N., Reiss, B.D., Martin, B.R., Keating, C.D., Natan, M.J., Mallouk, T.E., Adv. Mater., 13, 249, (2001).3.0.CO;2-9>CrossRefGoogle Scholar
(c) Loweth, C.J., Caldwell, W.B., Peng, X.G., Alivisatos, A.P., Schultz, P.G., Angew. Chem. Intl. Ed., 38, 1808, (1999).3.0.CO;2-C>CrossRefGoogle Scholar
11 (a) Leibowitz, F.L., Zheng, W.X., Maye, M.M., Zhong, C.J., Anal. Chem., 71, 5076, (1999).CrossRefGoogle Scholar
b Zheng, W.X., Maye, M.M., Leibowitz, F.L., Zhong, C.J., Anal. Chem., 72, 2190, (2000).CrossRefGoogle Scholar
c Zhang, F.X., Zheng, W.X., Maye, M.M., Lou, Y., Han, L., Zhong, C.J., Langmuir, 16, 9639, (2000).CrossRefGoogle Scholar
12 Boal, A.K., Ilhan, F., DeRouchey, J.E., Thurn-Albrecht, T., Russell, T.P., Rotello, V.M., Nature, 404, 746, (2000).CrossRefGoogle Scholar
13 Maye, M.M., Zheng, W.X., Leibowitz, F.L., Ly, N.K., Zhong, C.J., Langmuir, 16, 490, (2000).CrossRefGoogle Scholar
14 (a) Yim, H.W., Tran, L.M., Dobbin, E.D., Rabinovich, D., Liable-Sands, L.M., Incarvito, C.D., Lam, K.-C., Rheingold, A.L., Inorg. Chem., 38, 2211, (1999).CrossRefGoogle Scholar
(b) Yim, H.W., Tran, L.M., Pullen, E.E., Rabinovich, D., Liable-Sands, L.M., Concolino, T.E., Rheingold, A.L., Inorg. Chem., 38, 6234. (1999).CrossRefGoogle Scholar
15 Papavassiliou, G.C., Prog. Solid St. Chem, 12, 185271 (1979).CrossRefGoogle Scholar
16 Maye, M.M., Luo, J., Han, L., Zhong, C.J., Nano Lett., 1, 575, (2001).CrossRefGoogle Scholar
17 Adachi, E., Langmuir, 16, 6460, (2000).CrossRefGoogle Scholar
18 Jian, J., Tomokazu, I., Changsheng, C., Yanlin, S., Lei, J., Tie, J.L., Dao, B.Z., Angew. Chem. Int. Ed., 40, 2135, (2001).3.0.CO;2-O>CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Construction of Spherical Assembly of Gold Nanoparticles Using Tetra[(methylthio)methyl] silane as Ligand
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Construction of Spherical Assembly of Gold Nanoparticles Using Tetra[(methylthio)methyl] silane as Ligand
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Construction of Spherical Assembly of Gold Nanoparticles Using Tetra[(methylthio)methyl] silane as Ligand
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *