Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-16T21:31:09.049Z Has data issue: false hasContentIssue false

Composition Dependence of Solid-State Amorphization Kinetics

Published online by Cambridge University Press:  26 February 2011

W. S. L. Boyer
Affiliation:
The University of Michigan, Department of Nuclear Engineering, Ann Arbor, MI 48109
M. Atzmon
Affiliation:
The University of Michigan, Department of Nuclear Engineering, Ann Arbor, MI 48109
Get access

Abstract

Solid-state amorphization rates have been measured for amorphous Ni1-cMc in contact with the crystalline terminal phase M, (M=Hf or Zr). The interdiffusion coefficient Dis found to depend on the composition of the amorphous phase, with higher Ni content resulting in a higher Dover the composition range Ni67Hf33 to Ni47Hf53. The common tangent composition at which the amorphous alloy is in metastable equilibrium with the terminal crystalline phase is found to be greater than 70 at.% Hf, which is considerably higher than previously reported values. This discrepancy is explained in terms of the interdiffusion coefficient's variation with composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schwarz, R.B. and Johnson, W.L., Phys. Rev. Lett., 51, 415 (1983).CrossRefGoogle Scholar
2. Rossum, M. Van, Nicolet, M.-A., and Johnson, W.L., Phys. Rev. B29, 5498 (1984).CrossRefGoogle Scholar
3. Clemens, B.M., Schwarz, R.B., and Johnson, W.L., J. Non-Cryst. Sol., 61 & 62, 817 (1984).CrossRefGoogle Scholar
4. Cheng, Y.-T., Nicolet, M.-A., and Johnson, W.L., in Thin Films: Interfaces and Phenomena, edited by Nemanich, R.J. Ho, P.S. and Lau, S.S. (Mat. Res. Soc. Symp. Proc. 54, Pittsburgh, 1986), p. 175.Google Scholar
5. Cheng, Y.-T., Johnson, W.L., and Nicolet, M.-A., Appl. Phys. Lett. 47, 800 (1985).CrossRefGoogle Scholar
6. Barbour, J.C., Nastasi, M., and Mayer, J.W., Appl. Phys. Lett. 48, 517 (1986).CrossRefGoogle Scholar
7. Barbour, J.C., Reus, R. de, Gon, A.W. Denier van der and Saris, F.W., J. Mater. Res. 2, 168 (1987).CrossRefGoogle Scholar
8. Doolittle, L.R., Nucl. Instrum. Methods B 9, 344 (1985); 15, 227 (1986).CrossRefGoogle Scholar
9. Pampus, K., Samwer, K., Bottiger, J., Schroder, H., and Torp, B., Z. Phys. Chem. 157, 251 (1988).CrossRefGoogle Scholar
10. Stephenson, G.B., J. Non-Cryst. Solids, 66, 393 (1984).CrossRefGoogle Scholar
11. Greer, A.L., present volume.Google Scholar
12. Horvath, J., Pfahler, K., Ulfert, W., Frank, W. and Kronmuller, H., Proceedings of the International Conference on Vacancies and Interstitials in Metals and Alloys, Berlin, 1986.Google Scholar