Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-s8qdg Total loading time: 0.211 Render date: 2021-09-27T10:36:19.699Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Composition and Strain Dependence of the Piezoelectric Coefficients in Semiconductor Alloys

Published online by Cambridge University Press:  01 February 2011

T. Hammerschmidt
Affiliation:
hammer@fhi-berlin.mpg.de, University of Sheffield, Sheffield, N/A, United Kingdom
M. A. Migliorato
Affiliation:
M.Migliorato@physics.org, University of Sheffield, Department of Electronic and Electrical Engineering, Mappin Street, Sheffield, N/A, United Kingdom
D. Powell
Affiliation:
davep@transitive.com, University of Sheffield, Sheffield, N/A, United Kingdom
A. G. Cullis
Affiliation:
a.g.cullis@sheffield.ac.uk, University of Sheffield, Sheffield, N/A, United Kingdom
G. P. Srivastava
Affiliation:
gps@excc.ex.ac.uk, University of Exeter, Exeter, N/A, United Kingdom
Get access

Abstract

We propose a tight-binding model for the polarization that considers direct and dipole contributions and employs microscopic quantities that can be calculated by first-principles methods, e.g. by employing Density Functional Theory (DFT). Applying our model to InxGa1-xAs alloys allows us to settle discrepancies between the values of e14 as obtained from experiments and from linear interpolations between the values of InAs and GaAs. Our calculated piezoelectric coefficient is in very good agreement with photo current measurements of InAs/GaAs(111) quantum well samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Migliorato, M.A., Powell, D., Zibik, E.A., Wilson, L.R., Fearn, M., Jefferson, J.H., Steer, M.J., Hopkinson, M. and Cullis, A.G., Physica E 26, 436 (2005)Google Scholar
2. Migliorato, M. A., Powell, D., Liew, S. L., Cullis, A. G., Fearn, M., Jefferson, J. H., Navaretti, P., Steer, M. J., Hopkinson, M., J. Appl. Phys. 96, 5169 (2004)Google Scholar
3. Bester, G and Zunger, A, Phys Rev B 71, 045318 (2005)Google Scholar
4. Grundmann, M., Stier, O. and Bimberg, D., Phys Rev B 52, 11 969 (1995)Google Scholar
5. Davies, J. H., J Appl Phys 84, 1358 (1998)Google Scholar
6. Stier, O., Grundmann, M. and Bimberg, D., Phys Rev B 59, 5688 (1999)Google Scholar
7. Cady, W.G., Piezolectricity (McGraw-Hill, New York, 1946)Google Scholar
8. Martin, R.M., Phys Rev B 5, 1607 (1972)Google Scholar
9. Bester, G, Wu, X, Vanderbilt, D and Zunger, A, Phys Rev Lett 96, 187602 (2006)Google Scholar
10. Adachi, , Physical Properties of III-V SemiconductorCompounds (1992)Google Scholar
11.e.g. see Singh, J. - Physics of Semic. and their Heterostructures-Mc Graw Hill (1993)Google Scholar
12. Migliorato, M.A., Powell, D., Cullis, A.G., Hammerschmidt, T., and Srivastava, G.P., Phys. Rev. B 74, 245332 (2006)Google Scholar
13. Hogg, R.A., Fisher, T.A., A.Willcox, R.K., Whittaker, D.M., Skolnick, M.S., Mowbray, D.J., J.P.R. David, Pabla, A.S., Rees, G.J., Grey, R., Woodhead, J., J.L. Sanchez-Rojas, Hill, G., Pate, M.A. and Robson, P.N., Phys. Rev. B 48, 8491 (1993)Google Scholar
14. Sanchez-Rojas, J.L., Sacedón, A., Gonzáles-Sanz, F., Calleja, E. and Muñoz, E., Appl. Phys. Lett. 65, 2042 (1994)Google Scholar
15. Chan, C.H., Lin, H.H., Chen, Y.F., and Jan, G.J., Appl. Phys. Lett. 72, 1208 (1998)Google Scholar
16. Bahder, T.B., Tober, R.L. and Bruno, J.D., Superlatt. Microstruct. 14, 149 (1993)Google Scholar
17. Cho, S., Kim, J., Sanz-Herv́s, A., Majerfeld, A., Patriarche, G. and Kim, B.W., phys. stat. sol. (a) 195, 260 (2003); S. Cho, A. Majerfeld, A. Sanz-Hervás, J.J. Sánchez, J.L. Sanchez-Rojas and I. Izpura, J. Appl. Phys 90, 915 (2001); S. Cho, A. Sanz-Hervás, J. Kim, A. Majerfeld and B.W. Kim, J. Appl. Phys 96, 1909 (2004)Google Scholar
18. Dehaese, O., Wallart, X., and Mollot, F., Appl Phys Lett 66, 52 (1995)Google Scholar
19. Ballet, P., Disseix, P., Leymarie, J., Vasson, A., Vasson, A.-M., Grey, R., Phys. Rev. B 59, R5308 (1999)Google Scholar
20. Wilson, L.R., Ph.D Thesis, Optical Spectroscopic Study of III-V Semiconductor Quantum Well and Quantum Dot Structures, Department of Physics, University of Sheffield, 1997Google Scholar
21. Moran, M., Meidia, H., Fleishmann, T., Norris, D.J., Rees, G. J., Cullis, A.G. and Hopkinson, M., J. Phys. D 34, 1943 (2001)Google Scholar
22. Harrison, W.A., “Electronic structure and properties of solids”, Dover Pub., Inc., New York (1989)Google Scholar
23. Kleinman, L., Phys. Rev. 128, 199 (1962)Google Scholar
24.for Z* the subscript H indicates that for this quantity we follow Harrison's definition [15], not to be confused with the commonly used quantity Z*, the effective charge, which is instead equivalent to Harrison's e*T Google Scholar
25. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991)Google Scholar
26. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981)Google Scholar
27. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5189 (1976)Google Scholar
28. Wang, S.Q. and Ye, H.Q., phys. stat. sol. (b) 240, 45 (2003)Google Scholar
29. Wang, S.Q. and Ye, H.Q., J. Phys. Condens. Matter 17, 4475 (2005)Google Scholar
30.For these calculations we used the SFHIngX code that allows to enter the strain tensor explicitly: Boeck, S., Alsharif, A., Dick, A., Ismer, L., Qteish, A., and Neugebauer, J., http://www.sfhingx.deGoogle Scholar
31. Shen, San-Guo, J. Phys. Condens. Matter 6, 8733 (1994)Google Scholar
32. Falter, C., Ludwig, W., Selmke, M. and Zieran, W, Phys. Lett 105, 139 (1984)Google Scholar
33. Bouarissa, N, Phys Lett A 245, 285 (1998)Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Composition and Strain Dependence of the Piezoelectric Coefficients in Semiconductor Alloys
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Composition and Strain Dependence of the Piezoelectric Coefficients in Semiconductor Alloys
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Composition and Strain Dependence of the Piezoelectric Coefficients in Semiconductor Alloys
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *