Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-9m8n8 Total loading time: 0.34 Render date: 2022-10-04T08:33:35.117Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

The Chemistry of GaN Growth

Published online by Cambridge University Press:  17 March 2011

T.F. Kuech
Affiliation:
University of Wisconsin-Madison, Department of Chemical Engineering, Madison, WI, 53706
Shulin Gu
Affiliation:
University of Wisconsin-Madison, Department of Chemical Engineering, Madison, WI, 53706
Ramchandra Wate
Affiliation:
University of Wisconsin-Madison, Department of Chemical Engineering, Madison, WI, 53706
Ling Zhang
Affiliation:
University of Wisconsin-Madison, Department of Chemical Engineering, Madison, WI, 53706
Jingxi Sun
Affiliation:
University of Wisconsin-Madison, Department of Chemical Engineering, Madison, WI, 53706
J.A. Dumesic
Affiliation:
University of Wisconsin-Madison, Department of Chemical Engineering, Madison, WI, 53706
J.M. Redwing
Affiliation:
Pennsylvania State University, Dept. of Materials Science, University Park, PA, 16802.
Get access

Abstract

The development of new chemically based growth techniques has opened the range of possible GaN applications. This paper reviews some of the challenges in the chemically based growth of GaN and related materials. Ammonothermal-based growth, hydride vapor phase epitaxy and metal organic vapor phase epitaxy (MOVPE) are chemically complex systems wherein the underlying mechanisms of growth are not well understood at present. All these systems require substantial experimental and theoretical efforts to determine the nature and kinetics of GaN growth. In the case of metal organic vapor phase epitaxy, the application of computational techniques based on density functional theory have augmented the more conventional experimental approaches to determining the growth chemistry. These chemical reaction schemes, when combined with computational thermal-fluid models of the reactor environment, provide the opportunity to predict growth rates, uniformity and eve ntually materials properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ballman, A.A. and Laudise, R.A., “Hydrothermal Growth,” in The Art and Science of Growing Crystals, ed. Gilman, J.J. (John Wiley & Sons, New York 1963).Google Scholar
2. Porowski, S. and Grzegory, I., Properties of Group III nitrides, 11, (1994) 76.Google Scholar
3. Lo, I.H. and Stringfellow, G.B., Appl. Phys. Lett. 69, 2701 (1996).Google Scholar
4. Peters, D., J. Cryst. Growth 104, 411 (1990).CrossRefGoogle Scholar
5. Dwilinski, R., Doradzinski, R., Garczynski, J., Sierzputowski, L., Baranowski, J.M., Kaminska, M., Diamond and Rel. Mater. 7, 1348 (1998).CrossRefGoogle Scholar
6. Dwilinski, R., Wysmolek, A., Baranowski, J., Kaminska, M., Doradzinski, R., Garczynski, J., Sierzputowski, L., and Jacobs, H., Acta Phys. Polon. A 88, 833 (1995).CrossRefGoogle Scholar
7. Purdy, A.P., Chem. Mater. 11 1648 (1999).CrossRefGoogle Scholar
8. Jegier, J.A., McKernan, S., Purdy, A.P., and Gladfelter, W.L., Chem. Mater. 12, 1003 (2000).CrossRefGoogle Scholar
9. Byrappa, K., “Hydrothermal Growth of Crystals,” in Handbook of Crystal Growth, ed. Hurle, D.T.J. (North Holland, Amsterdam, 1994) Vol.2, Chapter 9.Google Scholar
10. Mutaftschiev, B., “Nucleation Theory”, in Handbook of Crystal Growth, ed. Hurle, D.T.J. (North Holland, Amsterdam, 1994) Vol.1, Chapter 4.Google Scholar
11. Keller, S., Keller, B. P., Wu, Y. F., Heying, B., Kapolnek, D., Speck, J. S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett., 68(11) 1525 (1996).CrossRefGoogle Scholar
12. Molnar, R. J., Nichols, K. B., Maki, P., Brown, E. R., and Melngailis, I., Mater. Res. Soc. Symp. Proc., 378, 479 (1995).CrossRefGoogle Scholar
13. Akasaki, I., and Amano, H., J. Crystal Growth, 163, 86 (1996).CrossRefGoogle Scholar
14. Monlar, R. J., Gotz, W., Romano, L. T., and Johnson, J. M., J. Crystal Growth, 178, 147 (1997).Google Scholar
15. Gu, Shulin, Zhang, Rong, Sun, Jingxi, Zhang, Ling, and Kuech, T. F., Appl. Phys. Lett. 76 (2000) 3454.CrossRefGoogle Scholar
16. Hashimoto, T., Terakoshi, Y., Ishida, M., Yuri, M., Imafuli, O., Sugino, T., Yoshikawa, A., Itoh, K., J. Crystal Growth 189–190 (1998) 254.CrossRefGoogle Scholar
17. Fuke, S., Teshigawara, H., Kuwahara, K., Takano, Y., Ito, T., Yanagihara, M., Ohtauka, K., J. Appl. Phys. 83 (1998) 764.CrossRefGoogle Scholar
18. Nakamura, S., Jap. J. Appl. Phy. Part 2 30, (1991) L1705.CrossRefGoogle Scholar
19.For an example of typical growth conditions see, Zhang, R. and Kuech, T.F., Appl. Phys. Lett. 72, 1611 (1997).CrossRefGoogle Scholar
20. Safvi, S.A., Redwing, J.M., Tischler, M.A., Kuech, T.F., J. Electrochem. Soc. 144 (1997) 1789.CrossRefGoogle Scholar
21. Coates, G.E., J. Chem. Soc. part III (1951) 1943.Google Scholar
22. Zaouk, A., Salvetat, E., Sakaya, J., Maury, F., and Constant, G., J. Crystal Growth 55 (1981) 135.CrossRefGoogle Scholar
23. Mazzarese, D., Tripathi, A., Conner, W. C., Jones, K. A., Calderon, L., and Eckart, W., J. Electron. Mater. 18 (1989) 369.CrossRefGoogle Scholar
24. Sywe, B. S., Schlup, J. R., and Edgar, J. H., Chem. Mater. 3 (1991) 737.CrossRefGoogle Scholar
25. Almond, M. J., Jenkins, C. E., Rice, D. A., and Hagen, K., J. Organomet. Chem. 439 (1992) 251.CrossRefGoogle Scholar
26. Thon, A. and Kuech, T.F., Appl. Phys. Lett. 69 (1996) 56.CrossRefGoogle Scholar
27. Saito, H., Makimoto, T., and Kobayashi, N., J. Crystal Growth 195 (1998) 416.CrossRefGoogle Scholar
28. Ougazzaden, A., Rao, E., Sermage, B., Leprince, L., and Gauneau, M., Jap. J. Appl. Phys. 38 (1999) 1019.CrossRefGoogle Scholar
29. Thon, A., Saulys, D., Safvi, S.A., Gaines, D.F., and Kuech, T.F., J. Electrochem. Soc. 144 (1997) 1127.CrossRefGoogle Scholar
30. Wate, R. M., Dumesic, J. A., and Kuech, T. F., J. Crystal Growth, 221 (2001) 751 CrossRefGoogle Scholar
31. Sun, J., Redwing, J.M., Kuech, T.F., Physica Status Solidi A. 176 (1999) 693.3.0.CO;2-Z>CrossRefGoogle Scholar
32. Sun, J., Redwing, J.M., Kuech, T.F., Wide-Bandgap Semiconductors for High-Power, High-Frequency and High-Temperature Applications, (Symposium. Mater. Res. Soc, Warrendale, PA, 1999) 463.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Chemistry of GaN Growth
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The Chemistry of GaN Growth
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The Chemistry of GaN Growth
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *