Skip to main content Accessibility help
×
Home

Chemical-Mechanical Polishing and Rapid Thermal Annealing of SiC: Raman Spectroscopy and ESCA (XPS) Studies

Published online by Cambridge University Press:  21 March 2011


Bahram Roughani
Affiliation:
Science and Mathematics Department, Kettering University 1700 W. third Ave, Flint, MI, 48504-4898 USA
Uma Ramabadran
Affiliation:
Science and Mathematics Department, Kettering University 1700 W. third Ave, Flint, MI, 48504-4898 USA
Diana Phillips
Affiliation:
Science and Mathematics Department, Kettering University 1700 W. third Ave, Flint, MI, 48504-4898 USA
W. C. Mitchel
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate Wright Patterson AFB, OH, 45433 USA
C. L. Neslen
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate Wright Patterson AFB, OH, 45433 USA

Abstract

The effects of Chem-Mechanical Polishing (CMP) and Rapid Thermal Annealing (RTA) on n-type 4H:SiC samples doped with nitrogen were investigated using Raman scattering and X-ray Phtoelectron Spectroscopy (XPS a.k.a. ESCA) measurements. A comparison of the Raman spectra from Mechanically Polished (MP) SiC annealed at 600°C and 800°C displays a frequency shift in the coupled plasmon LO-phonon mode. Since the coupled mode frequency is a direct measure of the free carrier concentration, this observation may suggest the removal of polishing induced carrier traps with increasing annealing temperature. The CMP samples did not show this frequency shift, thereby indicating that such polishing traps were not created in that process. The Si-peak observed in the XPS spectra of the unannealed CMP sample indicates primarily a Si-C bonding, while that for the MP sample is more complex, indicating other bonds beside Si-C. Drastic changes in O, C, Si surface content were observed for annealing between 1000°C and 1100°C. The peaks in the XPS spectra associated with the chemical environment for C, O, and N are complex and may be explained as silicon oxycarbide type structures near the surface or possibly around the interface of the SiC substrate with a thin surface oxide layer.


Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Sugawara, Y., Electronics and Communications in Japan, Part 2 (electronics), 82, 36 (1999), and the references therein.3.0.CO;2-Y>CrossRefGoogle Scholar
2. Owman, F., Martensson, Hallin P, and Janzen, E., J. Crys. Grwoth, 176, 391 (1996).CrossRefGoogle Scholar
3. Xie, Z.Y., Wei, C.H., Li, L.Y., Edgar, J.H.. Chaudhari, J., Ignatiev, C., MRS Internet J. Nitride Semicond. Res. 4S1, G3.39 (1999).Google Scholar
4. Zhou, Ling, Audurier, Valerie, Pirouz, Pirouz, and Powell, J. Anthony, J. Electrochem. Soc. 144, L161 (1997).CrossRefGoogle Scholar
5. Mitchel, W.C., Brown, J., Buchanan, D., Bertke, R., Mahalingham, K., Orazio, Fred D. Jr, Pirouz, Pirouz, Tseng, Huang-Ju R., Ramabadran, Uma, and Roughani, Bahram, Matels. Sci. Forum, 338–342, 841 (2000)CrossRefGoogle Scholar
6. Klein, Miles V., Ganguly, B.N., and Colwell, Priscilla J., Phys. Rev. B 6, 2380 (1972).CrossRefGoogle Scholar
7. harima, Hiroshi, Nakashima, Shin-ichi, and Uemura, Tomoki, J. Appl. Phys., 78, 1996 (1995).CrossRefGoogle Scholar
8. Yugami, H., Nakashima, S., mitsuishi, A., Uemoto, A., Shigeta, M., Furukawa, K., Suzuki, A., and Nakajima, S., J. Appl. Phys. 61, 354 (1987).CrossRefGoogle Scholar
9. Nakashima, S., and Harima, H., Phys. State. Sol. (a) 162, 39 (1997), and references therein.3.0.CO;2-L>CrossRefGoogle Scholar
10. Li, Hui-Feng, Dimitrijev, Sima, Sweatman, Denis, Harrison, H. Barry, Tanner, Phillip, and Feil, Bill. J. Appl. Phys. 86, 4316 (1999).CrossRefGoogle Scholar
11. Hornetz, B., Mitchel, H.J., and Halbritter, J., J. Mater. Res. 9, 3088 (1994).CrossRefGoogle Scholar
12. Onneby, C., and Pantano, C.G., J. Vac. Sci. Technol. A 15, 1597 (1997).CrossRefGoogle Scholar
13. Namiki, A., Tanimoto, K., Nakamura, T., Ohtake, N., and Suzaki, T., Surf. Sci. 222, 530 (1989).CrossRefGoogle Scholar
14. Batra, I.P., Bagus, P.S., and Hermann, K., Phys. Rev. B 39, 3720 (1989).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 13 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-n2swh Total loading time: 0.329 Render date: 2020-12-02T19:46:35.667Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Wed Dec 02 2020 19:05:25 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Chemical-Mechanical Polishing and Rapid Thermal Annealing of SiC: Raman Spectroscopy and ESCA (XPS) Studies
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Chemical-Mechanical Polishing and Rapid Thermal Annealing of SiC: Raman Spectroscopy and ESCA (XPS) Studies
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Chemical-Mechanical Polishing and Rapid Thermal Annealing of SiC: Raman Spectroscopy and ESCA (XPS) Studies
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *