Hostname: page-component-5db6c4db9b-wnbrb Total loading time: 0 Render date: 2023-03-24T09:48:37.962Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Chemical Vapor Deposition of Conformal Alumina Thin Films

Published online by Cambridge University Press:  10 February 2011

Bradley D. Fahlman
Department of Chemistry, Rice University, Houston, Texas 77005
Andrew R. Barron*
Department of Chemistry, Rice University, Houston, Texas 77005 Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas 77005
To whom correspondence should be addressed (
Get access


Deposition of highly conformal alumina thin films has been carried out by hydrolysis of the liquid alane precursor, AlH3(NMe2Et). Deposition onto Si wafers, quartz and carbon fibers were all carried out utilizing a hot-wall atmospheric pressure chemical vapor deposition (APCVD) system, while deposition onto ceramic particles was accomplished in a simple fluidized-bed APCVD reactor. Films were characterized by SEM, microprobe and electrical conductivity measurements. Growth rates were on the order of 40 - 80 Å.min−1 at 165 °C. The conformality of the films was illustrated using silicon wafers that were etched prior to deposition.

Research Article
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1 Tombs, N. C., Wegener, H. A., Newman, R., Kenny, B. T., and Coppola, A. J., Proc. IEEE. 55, 1168 (1967).Google Scholar
2 Zaininger, K. H. and Waxman, A. S., IEEE Trans. Electron. Devic, 16, 333 (1963).CrossRefGoogle Scholar
3 Hashimoto, S., Peng, J. L., and Gibson, W. M, Appl. Phys. Lett. 47, 1071 (1985).CrossRefGoogle Scholar
4 Barron, A. R. in CVD of Non-Metals, Ed. by Rees, W.S. Jr., VCH, New York, 1996, pp. 262313.Google Scholar
5 Huas, T. H. and Armgarth, M., J. Electron. Mater. 16, 27 (1987).Google Scholar
6 Maruyama, T. and Arai, S., Appl. Phys. Lett. 60, 322 (1992).CrossRefGoogle Scholar
7 Saraie, J., Kwon, J., and Yodogawa, Y., J. Electrochem. Soc. 132, 890 (1985).CrossRefGoogle Scholar
8 Gordon, R. G., Kramer, K., and Liu, X., Mat. Res. Soc. Symp. Proc. 446, 383 (1997).CrossRefGoogle Scholar
9 Simmonds, M. G., Gladfelter, W. L., Rao, N., Szymanski, W. W., Ahn, K. H., and McMurry, P. H., J. Vac. Sci. Technol. A9, 2782 (1991).CrossRefGoogle Scholar
10 Gustin, K. M. and Gordon, R. G., J. Electronic Mater. 17, 509 (1988).CrossRefGoogle Scholar
11 Simmonds, M. G., Phillips, E. C., Hwang, J. W., and Gladfelter, W. L., Chemtronics 5, 155 (1991).Google Scholar
12 Frigo, D. M., Eijden, G. J. M. van, Reuvers, P. J., and Smit, C. J., Chem. Mater., 6, 190 (1994).CrossRefGoogle Scholar
13 Jang, T. W., Moon, W., Back, J. T., and Ahn, B. T., Thin Solid Films, 333, 137 (1998).CrossRefGoogle Scholar
14 Barron, A. R. and Rees, W. S. Jr., Adv. Mater. Opt. Electr. 2, 271 (1993).CrossRefGoogle Scholar
15 Fahlman, B. D. and Barron, A. R., unpublished results.Google Scholar
16 Gillan, E. G. and Barron, A. R., Chem. Mater., 9, 3037 (1997).CrossRefGoogle Scholar
17 Landry, C.C. and Barron, A. R., Carbon, 33, 381 (1995).CrossRefGoogle Scholar
18 Senzaki, y., Uhrhammer, D., Phillips, E. C. and Gladfelter, W. L. in Inorg. Synth., 31, 74 (1997).Google Scholar