Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-lzpzj Total loading time: 0.319 Render date: 2021-02-27T16:16:37.325Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Charge Generation and Transport in CdSe Semiconductor Quantum Dot Solids

Published online by Cambridge University Press:  10 February 2011

C. A. Leatherdale
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
N.Y. Morgan
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
C. R. Kagan
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
S. A. Empedocles
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
M. G. Bawendi
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
M. A. Kastner
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

We demonstrate photoconductivity and conductivity in three-dimensional close-packed solids of colloidal CdSe quantum dots. We observe quantum dot size and surface passivation dependent photoconductivity that can be qualitatively understood by considering the energy required in order to overcome the Coulomb energy of the initial electron-hole pair. Our results suggest that surface ligands that promote initial separation of the electron and hole reduce the electric field required for the onset of the photocurrent. The dark conductance is much smaller than the photoconductance. Hysteretic behaviour and extremely long-lived current transients are observed in the dark current that are suggestive of Coulomb-glass behaviour.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Murray, C.B., Kagan, C.R., and Bawendi, M.G., Science 270 (5240), 13351338 (1995).10.1126/science.270.5240.1335CrossRefGoogle Scholar
2. Korgel, B.A. and Fitzmaurice, D., Phys. Rev. Lett. 80 (16), 35313534 (1998).10.1103/PhysRevLett.80.3531CrossRefGoogle Scholar
3. Collier, C.P., Saykally, R.J., Shiang, J.J., Henrichs, S.E., and Heath, J.R., Science 277 (5334), 19781981 (1997).10.1126/science.277.5334.1978CrossRefGoogle Scholar
4. Terrill, R.H., Postlethwaite, T.A., Chen, C.H., Poon, C.D., Terzis, A., Chen, A.D., Hutchison, J.E., Clark, M.R., Wignall, G., Londono, J.D., Superfine, R., Falvo, M., Johnson, C.S., Samulski, E.T., and Murray, R.W., J. Amer. Chem. Soc. 117 (50), 1253712548 (1995).10.1021/ja00155a017CrossRefGoogle Scholar
5. Andres, R.P., Bielefeld, J.D., Henderson, J.I., Janes, D.B., Kolagunta, V.R., Kubiak, C.P., Mahoney, W.J., and Osifchin, R.G., Science 273 (5282), 16901693 (1996).10.1126/science.273.5282.1690CrossRefGoogle Scholar
6. Middleton, A.A. and Wingreen, N.S., Phys. Rev. Lett. 71 (19), 31983201 (1993).10.1103/PhysRevLett.71.3198CrossRefGoogle Scholar
7. Whan, C.B., White, J., and Orlando, T.P., Appl. Phys. Lett. 68 (21), 29962998 (1996).10.1063/1.116675CrossRefGoogle Scholar
8. Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Amer. Chem. Soc. 115 (19), 87068715 (1993).10.1021/ja00072a025CrossRefGoogle Scholar
9. Kagan, C.R., Murray, C.B., and Bawendi, M.G., Phys. Rev. B-Condens Matter 54 (12), 86338643 (1996).10.1103/PhysRevB.54.8633CrossRefGoogle Scholar
10. Empedocles, S.A., Norris, D.J., and Bawendi, M.G., Phys. Rev. Lett. 77 (18), 38733876 (1996).10.1103/PhysRevLett.77.3873CrossRefGoogle Scholar
11. Klimov, V.I. and McBranch, D.W., Phys. Rev. B-Condens Matter 55 (19), 1317313179 (1997).10.1103/PhysRevB.55.13173CrossRefGoogle Scholar
12. Hoheisel, W., Colvin, V.L., Johnson, C.S., and Alivisatos, A.P., J. Chem. Phys. 101 (10), 84558460 (1994).10.1063/1.468107CrossRefGoogle Scholar
13. Micic, O.I., Jones, K.M., Cahill, A., and Nozik, A.J., J. Phys. Chem. B 102, 97919796 (1998).10.1021/jp981703uCrossRefGoogle Scholar
14. Noolandi, J. and Hong, K.M., J. Chem. Phys. 70 (7), 32303236 (1979).10.1063/1.437912CrossRefGoogle Scholar
15. Nirmal, M., Dabbousi, B.O., Bawendi, M.G., Macklin, J.J., Trautman, J.K., Harris, T.D., and Brus, L.E., Nature 383 (6603), 802804 (1996).10.1038/383802a0CrossRefGoogle Scholar
16. Efros, A.L. and Rosen, M., Phys. Rev. Lett. 78 (6), 11101113 (1997).10.1103/PhysRevLett.78.1110CrossRefGoogle Scholar
17. Wang, Y. and Herron, N., J. Lumines. 70, 4859 (1996).10.1016/0022-2313(96)00043-9CrossRefGoogle Scholar
18. Greenham, N.C., Peng, X.G., and Alivisatos, A.P., Phys. Rev. B-Condens Matter 54 (24), 1762817637 (1996).10.1103/PhysRevB.54.17628CrossRefGoogle Scholar
19. Guyot-Sionnest, P., Shim, M., Matranga, C., and Hines, M., (submitted to Phys. Rev. Lett. November 1998).Google Scholar
20. Ben-Chorin, M., Ovadyahu, Z., and Pollak, M., Phys. Rev. B-Condens Matter 48, 15025–34 (1993).10.1103/PhysRevB.48.15025CrossRefGoogle Scholar
21. Martinez-Arizala, G., Christiansen, C., Grupp, D.E., Markovic, N., Mack, A.M., and Goldman, A.M., Phys. Rev. B-Condens Matter 57, R6702 (1998).10.1103/PhysRevB.57.R670CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 2 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 27th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Charge Generation and Transport in CdSe Semiconductor Quantum Dot Solids
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Charge Generation and Transport in CdSe Semiconductor Quantum Dot Solids
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Charge Generation and Transport in CdSe Semiconductor Quantum Dot Solids
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *