Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-c2ftz Total loading time: 0.205 Render date: 2022-12-09T06:13:24.010Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Characterization of Atomic Layer DepositedWNxCy Thin Film as a Diffusion Barrier for CopperMetallization

Published online by Cambridge University Press:  01 February 2011

Soo-Hyun Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Su Suk Oh
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Hyun-Mi Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Dae-Hwan Kang
Affiliation:
Research Institute of Advanced Materials, Seoul National University, Seoul 151-742, Korea
Ki-Bum Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Wei-Min Li
Affiliation:
ASM Microchemisty Ltd., FIN-02631 Espoo, Finland
Suvi Haukka
Affiliation:
ASM Microchemisty Ltd., FIN-02631 Espoo, Finland
Marko Tuominen
Affiliation:
ASM Microchemisty Ltd., FIN-02631 Espoo, Finland
Get access

Abstract

The film properties of WNxCy films deposited by atomic layer deposition (ALD) using WF6, NH3, and triethylboron source gases were characterized as diffusion barrier for Cu metallization. It is noted that the as-deposited film shows an extremely low resistivity of about 350 μΔ-cm with a film density of 15.37 g/cm3. The film composition measured from Rutherford backscattering spectrometry shows W, C, and N of approximately 48, 32, and 20 at.%, respectively. Transmission electron microscopy analyses show that the as-deposited film is composed of face-centered-cubic phase with a lattice parameter similar to both β-WC1-x and β-W2N with an equiaxed microstructure. The barrier property of this ALD-WNxCy film at a nominal thickness of 12 nm deposited between Cu and Si fails only after annealing at 700°C for 30 minutes while the sputter-deposited Ta (12 nm) and ALD-TiN (20 nm) fail at 650 and 600°C, respectively. It is thought that the superior diffusion barrier performance of ALD-WNxCyfilm is the consequence of both nanocrystalline equiaxed grain structure and the formation of high density film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Leskelä, M. and Ritala, M., Thin Solid Films 409, 138 (2002).CrossRefGoogle Scholar
2. Suntola, T., Handbook of Crystal Growth Vol. 3 Chapter 14, edited by Hurle, D. T. J., ElsevierScience B. V. (1994).Google Scholar
3. Ritala, M., Leskelä, M., Rauhala, E., and Haussalo, P., J. Elcecotrchem. Soc. 142, 2731 (1995).CrossRefGoogle Scholar
4. Jeon, H., Lee, J.W., Kim, Y.D., Kim, D.S., and Yi, K.S., J. Vac. Sci. Technol. A 18, 1595 (2000).CrossRefGoogle Scholar
5. Elers, K.E., Saanila, W., Soininen, P. J., Li, W.M., Kostamo, J. T., Haukka, S., Juhanoja, J., and Besling, W. F. A., Chem. Vap. Deposition 8, 149 (2002).3.0.CO;2-F>CrossRefGoogle Scholar
6. Ritala, M., Leskelä, M., and Jokinen, J., J. Electrochem. Soc. 145, 2914 (1998).CrossRefGoogle Scholar
7. Ritala, M., Kalsi, P., Riihelä, D., Kukli, K., Leskelä, M., and Jokinen, J., Chem. Mater. 11, 1712 (1999).CrossRefGoogle Scholar
8. Alén, P., Juppo, M., Ritala, M., Sajavaara, T., Keinonen, J., and Leskelä, M., J. Electrochem. Soc. 148, G566 (2001).CrossRefGoogle Scholar
9. Alén, P., Juppo, M., Ritala, M., Sajavaara, T., Keinonen, J., and Leskelä, M., J. Mater. Res. 17, 107 (2002).CrossRefGoogle Scholar
10. Klaus, J.W., Ferro, S. J., and George, S.M., J. Electrochem. Soc. 147, 1175 (2000).CrossRefGoogle Scholar
11. Park, J.S., Park, H.S., and Kang, S.W., J. Electochem. Soc. 149, C28 (2002).CrossRefGoogle Scholar
12. Li, W.M., Elers, K.E., Kostamo, J., Kaipio, S., Huotari, H., Soininen, M., Soininen, P. J., Tuominen, M., Haukka, S., Smith, S., and Besling, W., Proceedings of the IEEE 2002 International Interconnect Technology Conference, June 3-5, 2002, CA, pp.191.Google Scholar
13. Smith, S., Li, W.M., Elers, K.E. and Pfeifer, K., Microelectronic Engineering 64, 247 (2002).CrossRefGoogle Scholar
14. Doolittle, L. R., Nucl. Instrum. Methods. Phys. Res. Sect. B 9, 344 (1985).CrossRefGoogle Scholar
15. Kim, S.H., S. S. Oh, Kim, H.M., Kang, D.H., Kim, K.B., Li, W.M., Haukka, S., and Tuominen, M. (Unpublished).Google Scholar
16. Tesmer, J.R., Nastasi, M., Barbour, J.C., Maggiore, C.J., and Mayer, J.W., Handbook of Modern Ion Beam Materials Analysis, Materials Research Society (1995).Google Scholar
17. Park, K.C., Kim, K.B., Raaijmakers, I., and Ngan, K., J. Appl. Phys. 80, 5674 (1996).CrossRefGoogle Scholar
18. Cabral, C. Jr., Lavoie, C., Harper, J.M.E., and Jordan-Sweet, J., Thin Solid Films 397, 194 (2001).CrossRefGoogle Scholar
19. Nam, K. T., Datta, A., Kim, S.H., and Kim, K.B.,Appl. Phys. Lett. 79, 2549 (2001).CrossRefGoogle Scholar
20. Kim, S.H., Chung, D.S., Park, K.C., Kim, K.B., and Min, S.H., J. Electrochem. Soc. 146, 1455 (1999).CrossRefGoogle Scholar
21. Juppo, M., Alén, P., Ritala, M., and Leskelä, M., Chem. Vap. Deposition. 7, 211 (2001).3.0.CO;2-L>CrossRefGoogle Scholar
22. Wang, S.J., Tsai, H. Y., and Sun, S. C., J. Electrochem. Soc. 148, C563 (2001).CrossRefGoogle Scholar
23. Oku, T., Kawakami, E., Uekubo, M., Takahiro, K., Yamaguchi, S., Murakami, M., Appl. Surf. Sci. 99, 265 (1996).CrossRefGoogle Scholar
24. Kim, S.H., Im, S.J., and Kim, K.B., Thin Solid Films 415, 177 (2002).CrossRefGoogle Scholar
25. Laurila, T., Zeng, K., Kivilahti, J. K., Molarius, J., and Suni, I., J.Appl. Phys. 91, 5391 (2002).CrossRefGoogle Scholar
26. Uekubo, M., Oku, T., Nii, K., Murakami, M., Takahiro, K., Ymaguchi, S., Nakano, T, and Ohta, T., Thin Solid Films 286, 170 (1996).CrossRefGoogle Scholar
27. Wang, S. J., Tsai, H.Y., Sun, S. C., andShiao, M. H., J. Electrochem. Soc. 148, G500 (2001).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Characterization of Atomic Layer DepositedWNxCy Thin Film as a Diffusion Barrier for CopperMetallization
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Characterization of Atomic Layer DepositedWNxCy Thin Film as a Diffusion Barrier for CopperMetallization
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Characterization of Atomic Layer DepositedWNxCy Thin Film as a Diffusion Barrier for CopperMetallization
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *