Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T11:57:40.176Z Has data issue: false hasContentIssue false

Characterization of Atomic Layer DepositedWNxCy Thin Film as a Diffusion Barrier for CopperMetallization

Published online by Cambridge University Press:  01 February 2011

Soo-Hyun Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Su Suk Oh
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Hyun-Mi Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Dae-Hwan Kang
Affiliation:
Research Institute of Advanced Materials, Seoul National University, Seoul 151-742, Korea
Ki-Bum Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Wei-Min Li
Affiliation:
ASM Microchemisty Ltd., FIN-02631 Espoo, Finland
Suvi Haukka
Affiliation:
ASM Microchemisty Ltd., FIN-02631 Espoo, Finland
Marko Tuominen
Affiliation:
ASM Microchemisty Ltd., FIN-02631 Espoo, Finland
Get access

Abstract

The film properties of WNxCy films deposited by atomic layer deposition (ALD) using WF6, NH3, and triethylboron source gases were characterized as diffusion barrier for Cu metallization. It is noted that the as-deposited film shows an extremely low resistivity of about 350 μΔ-cm with a film density of 15.37 g/cm3. The film composition measured from Rutherford backscattering spectrometry shows W, C, and N of approximately 48, 32, and 20 at.%, respectively. Transmission electron microscopy analyses show that the as-deposited film is composed of face-centered-cubic phase with a lattice parameter similar to both β-WC1-x and β-W2N with an equiaxed microstructure. The barrier property of this ALD-WNxCy film at a nominal thickness of 12 nm deposited between Cu and Si fails only after annealing at 700°C for 30 minutes while the sputter-deposited Ta (12 nm) and ALD-TiN (20 nm) fail at 650 and 600°C, respectively. It is thought that the superior diffusion barrier performance of ALD-WNxCyfilm is the consequence of both nanocrystalline equiaxed grain structure and the formation of high density film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Leskelä, M. and Ritala, M., Thin Solid Films 409, 138 (2002).Google Scholar
2. Suntola, T., Handbook of Crystal Growth Vol. 3 Chapter 14, edited by Hurle, D. T. J., ElsevierScience B. V. (1994).Google Scholar
3. Ritala, M., Leskelä, M., Rauhala, E., and Haussalo, P., J. Elcecotrchem. Soc. 142, 2731 (1995).Google Scholar
4. Jeon, H., Lee, J.W., Kim, Y.D., Kim, D.S., and Yi, K.S., J. Vac. Sci. Technol. A 18, 1595 (2000).Google Scholar
5. Elers, K.E., Saanila, W., Soininen, P. J., Li, W.M., Kostamo, J. T., Haukka, S., Juhanoja, J., and Besling, W. F. A., Chem. Vap. Deposition 8, 149 (2002).Google Scholar
6. Ritala, M., Leskelä, M., and Jokinen, J., J. Electrochem. Soc. 145, 2914 (1998).Google Scholar
7. Ritala, M., Kalsi, P., Riihelä, D., Kukli, K., Leskelä, M., and Jokinen, J., Chem. Mater. 11, 1712 (1999).Google Scholar
8. Alén, P., Juppo, M., Ritala, M., Sajavaara, T., Keinonen, J., and Leskelä, M., J. Electrochem. Soc. 148, G566 (2001).Google Scholar
9. Alén, P., Juppo, M., Ritala, M., Sajavaara, T., Keinonen, J., and Leskelä, M., J. Mater. Res. 17, 107 (2002).Google Scholar
10. Klaus, J.W., Ferro, S. J., and George, S.M., J. Electrochem. Soc. 147, 1175 (2000).Google Scholar
11. Park, J.S., Park, H.S., and Kang, S.W., J. Electochem. Soc. 149, C28 (2002).Google Scholar
12. Li, W.M., Elers, K.E., Kostamo, J., Kaipio, S., Huotari, H., Soininen, M., Soininen, P. J., Tuominen, M., Haukka, S., Smith, S., and Besling, W., Proceedings of the IEEE 2002 International Interconnect Technology Conference, June 3-5, 2002, CA, pp.191.Google Scholar
13. Smith, S., Li, W.M., Elers, K.E. and Pfeifer, K., Microelectronic Engineering 64, 247 (2002).Google Scholar
14. Doolittle, L. R., Nucl. Instrum. Methods. Phys. Res. Sect. B 9, 344 (1985).Google Scholar
15. Kim, S.H., S. S. Oh, Kim, H.M., Kang, D.H., Kim, K.B., Li, W.M., Haukka, S., and Tuominen, M. (Unpublished).Google Scholar
16. Tesmer, J.R., Nastasi, M., Barbour, J.C., Maggiore, C.J., and Mayer, J.W., Handbook of Modern Ion Beam Materials Analysis, Materials Research Society (1995).Google Scholar
17. Park, K.C., Kim, K.B., Raaijmakers, I., and Ngan, K., J. Appl. Phys. 80, 5674 (1996).Google Scholar
18. Cabral, C. Jr., Lavoie, C., Harper, J.M.E., and Jordan-Sweet, J., Thin Solid Films 397, 194 (2001).Google Scholar
19. Nam, K. T., Datta, A., Kim, S.H., and Kim, K.B.,Appl. Phys. Lett. 79, 2549 (2001).Google Scholar
20. Kim, S.H., Chung, D.S., Park, K.C., Kim, K.B., and Min, S.H., J. Electrochem. Soc. 146, 1455 (1999).Google Scholar
21. Juppo, M., Alén, P., Ritala, M., and Leskelä, M., Chem. Vap. Deposition. 7, 211 (2001).Google Scholar
22. Wang, S.J., Tsai, H. Y., and Sun, S. C., J. Electrochem. Soc. 148, C563 (2001).Google Scholar
23. Oku, T., Kawakami, E., Uekubo, M., Takahiro, K., Yamaguchi, S., Murakami, M., Appl. Surf. Sci. 99, 265 (1996).Google Scholar
24. Kim, S.H., Im, S.J., and Kim, K.B., Thin Solid Films 415, 177 (2002).Google Scholar
25. Laurila, T., Zeng, K., Kivilahti, J. K., Molarius, J., and Suni, I., J.Appl. Phys. 91, 5391 (2002).Google Scholar
26. Uekubo, M., Oku, T., Nii, K., Murakami, M., Takahiro, K., Ymaguchi, S., Nakano, T, and Ohta, T., Thin Solid Films 286, 170 (1996).Google Scholar
27. Wang, S. J., Tsai, H.Y., Sun, S. C., andShiao, M. H., J. Electrochem. Soc. 148, G500 (2001).Google Scholar