Skip to main content Accessibility help
×
Home

Carbon Nanotubes Induced Changes in the Phase Diagram and Crystal Structure of 5CB Liquid Crystal

Published online by Cambridge University Press:  24 May 2011

Georgi Y. Georgiev
Affiliation:
Department of Natural Sciences, Assumption College, Worcester, MA 01609, U.S.A. Department of Physics and Astronomy, Tufts University, Medford, MA 02155, U.S.A.
Michael B. McIntyre
Affiliation:
Department of Natural Sciences, Assumption College, Worcester, MA 01609, U.S.A.
Erin A. Gombos
Affiliation:
Department of Natural Sciences, Assumption College, Worcester, MA 01609, U.S.A.
Peggy Cebe
Affiliation:
Department of Physics and Astronomy, Tufts University, Medford, MA 02155, U.S.A.
Get access

Abstract

Multiwall Carbon Nanotubes (MWCNTs) form a nematic liquid crystalline (LC) phase in their lyotropic form, enabling their mixing and coupling of their director to that of nematic LCs. An important aspect of this LC/MWCNT interaction, for applications other than display technology, is looking at the ways the MWCNTs affect the physical properties of the LCs. We study the effect of MWCNTs on the nematic to crystal (N-C) phase transition of 4-cyano-4-npentylbiphenyl (5CB). Our Differential Scanning Calorimetry (DSC) results show a dramatic increase in N-C phase transition temperature of 14°C for only 0.1% and of 20°C for 1% MWCNT, due to the crystal nucleation activity of the nanotubes. Using Polarized Microscopy we observe a change in the crystalline order of 5CB from spherulitic at 0% MWCNTs to a multidomain in presence of MWCNTs. The new crystals resemble those formed by a smectic LC 4- Decyloxybenzoic acid. This is in line with predictions from simulations, that the MWCNTs form smectic order in nematic 5CB at their interface. MWCNTs induced modifications of the crystal phase of 5CB promise to create controlled novel crystal forms for the purposes of optical transmission and other applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Eletskii, A., Physics - Uspekhi 50(3) 225261 (2007).CrossRefGoogle Scholar
2. Baik, I., Jeon, S., and Lee, S., Park, K., Jeong, S., An, K. and Lee, Y., Applied Physics Letters 87 263110 (2005).CrossRefGoogle Scholar
3. Basu, R., Sigdel, K. and Iannacchione, G., arXiv:0905.2779 (2009).Google Scholar
4. Dierking, I., Scalia, G. and Morales, P., J. Appl. Phys. 92, 8 (2004).Google Scholar
5. Duran, H., Gazdecki, B., Yamashita, A., Kyu, T., Liquid Crystals 32(7) 815821 (2005).CrossRefGoogle Scholar
6. Georgiev, G., Gombos, E. A., McIntyre, M., Mattera, M., Gati, P., Cabrera, Y. and Cebe, P., in Nanoscale Pattern Formation, edited by Chason, E., Cuerno, R., Gray, J., Heinig, K.-H., (Mater. Res. Soc. Symp. Proc. 1228E, Warrendale, PA, 2010), KK1181.Google Scholar
7. Georgiev, G., Gombos, E. A., McIntyre, M. and Cebe, P., submitted to Liquid Crystal Materials - Beyond Displays (Mater. Res. Soc. Symp. Proc. Fall 2010 meeting in Boston, MA), ID: 910556Google Scholar
8. Dawid, A., Gwizdała, W., Journal of Non-Crystalline Solids 355 13021306 (2009)CrossRefGoogle Scholar
9. Gwizdała, W., Górny, K., Gburski, Z., Journal of Molecular Structure 887 148151 (2008)CrossRefGoogle Scholar
10. Lagerwall, J., and Scalia, G., Journal of Material Chemistry 18, 28902898 (2008)CrossRefGoogle Scholar
11. Georgiev, G., Cabrera, Y., Wielgus, L., Iftikhar, Z., Mattera, M., Gati, P., Potter, A. and Cebe, P., in Artificially Induced Grain Alignment in Thin Films, edited by Matias, V., Hammond, R., Moon, S.-H., Hühne, R. (Mater. Res. Soc. Symp. Proc. 1150, Warrendale, PA, 2009), RR04-16, p. 185190 Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 12 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-gtgjg Total loading time: 0.226 Render date: 2021-01-23T09:31:40.103Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Carbon Nanotubes Induced Changes in the Phase Diagram and Crystal Structure of 5CB Liquid Crystal
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Carbon Nanotubes Induced Changes in the Phase Diagram and Crystal Structure of 5CB Liquid Crystal
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Carbon Nanotubes Induced Changes in the Phase Diagram and Crystal Structure of 5CB Liquid Crystal
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *