Skip to main content Accessibility help
×
Home

Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications

Published online by Cambridge University Press:  17 March 2011


Tewodros Asefa
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
Neil Coombs
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
Hiltrud Grondey
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
Mietek Jaroniec
Affiliation:
Department of Chemistry, Kent State University, Kent, Ohio, 44242, USA
Michal Kruk
Affiliation:
Department of Chemistry, Kent State University, Kent, Ohio, 44242, USA
Mark J. MacLachlan
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
Geoffrey A. Ozin
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada

Abstract

In recent years, the extraordinary properties of bio-inspired nanocomposites have stimulated great interest in the development of bottom-up synthetic approaches to organic-inorganic hybrid materials in which molecular scale control is exerted over the interface between the organic and inorganic moieties. These developments have led to advanced materials with novel properties and potential use in catalysis, sensing, separations and environmental remediation. Periodic mesoporous organosilica (PMO) materials are an entirely new class of nanocomposites with molecularly integrated organic/inorganic networks, high surface areas and pore volumes, and well ordered and uniform size pores and channels. We recently have extended the approach to include novel PMO materials incorporating chiral and heteroatom-containing organic functional groups inside the inorganic framework that may be useful in asymmetric catalysis, enantiomeric separations and heavy metal remediation.


Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Weiner, S., Addadi, L., and Wagner, H. D., Mater. Sci. Eng. C 11, 1 (2000).CrossRefGoogle Scholar
2. Levi-Kalisman, Y., Falini, G., Addadi, L., and Weiner, S., J. Struct. Biol. 135, 8 (2001).CrossRefGoogle Scholar
3. Becker, W., Marxen, J., Epple, M., and Reelsen, O., J. Appl. Physiology 89, 1601 (2000).CrossRefGoogle Scholar
4. Louloudi, M., Deligiannakis, Y., and Hadjiliadis, N., J. Inorg. Biochem. 79, 93 (2000).CrossRefGoogle Scholar
5. Louloudi, M., Deligiannakis, Y., and Hadjiliadis, N., Inorg. Chem. 37, 6847 (1998).CrossRefGoogle Scholar
6. Nicolini, C., Biosensors & Bioelctronics 10, 105 (1995).CrossRefGoogle Scholar
7. Zhou, B. L., Mater. Sci. Eng. C 11, 13 (2000).CrossRefGoogle Scholar
8. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., and Beck, J. S., Nature 359, 710 (1992).CrossRefGoogle Scholar
9. Asefa, T., MacLachlan, M. J., Coombs, N., and Ozin, G. A., Nature 402, 867 (1999).CrossRefGoogle Scholar
10. Yoshina-Ishii, C., Asefa, T., Coombs, N., MacLachlan, M. J., and Ozin, G. A., Chem. Commun. 2539 (1999).CrossRefGoogle Scholar
11. Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T., and Terasaki, O., J. Am. Chem. Soc. 121, 9611 (1999).CrossRefGoogle Scholar
12. Melde, B. J., Holland, B. T., Blanford, C. F., and Stein, A., Chem. Mater. 11, 3302 (1999).CrossRefGoogle Scholar
13. Asefa, T., MacLachlan, M. J., Grondey, H., Coombs, N., and Ozin, G. A., Angew. Chem. Int. Ed. Engl. 39, 1808 (2000).3.0.CO;2-G>CrossRefGoogle Scholar
14. Kruk, M., Jaroniec, M., Guan, S., and Inagaki, S., J. Phys. Chem. B 105, 681 (2001).CrossRefGoogle Scholar
15. MacLachlan, M. J., Asefa, T., and Ozin, G. A., G. A. Chem. Eur. J. 6, 2507 (2000).3.0.CO;2-9>CrossRefGoogle Scholar
16. Asefa, T., Yoshina-Ishii, C., MacLachlan, M. J. and Ozin, G. A., J. Mater. Chem. 10, 1751 (2000).CrossRefGoogle Scholar
17. Dag, Ö., Yoshina-Ishii, C., Asefa, T., MacLachlan, M. J., Grondey, H., and Ozin, G. A., Adv. Funct. Mater. 3, 213 (2001).3.0.CO;2-C>CrossRefGoogle Scholar
18. Asefa, T., Kruk, M., MacLachlan, M. J., Coombs, N., Grondey, H., Jaroniec, M., and Ozin, G. A., J. Am. Chem. Soc. 123, 8520 (2001).CrossRefGoogle Scholar
19. Temtsin, G., Asefa, T., Bittner, S., and Ozin, G. A., J. Mater. Chem. 11, 3202 (2001).CrossRefGoogle Scholar
20. Asefa, T., Kruk, M., Coombs, N., Petrov, S., Jaroniec, M., and Ozin, G. A., J. Mater. Chem., submitted.Google Scholar
21. Guan, S., Inagaki, S., Ohsuna, T., and Terasaki, O., J. Am. Chem. Soc. 122, 5660 (2000).CrossRefGoogle Scholar
22. Lu, Y., Fan, H., Doke, N., Loy, D. A., Assink, R. A., LaVan, D. A., and Brinker, C. J., J. Am. Chem. Soc. 122, 5258 (2000).CrossRefGoogle Scholar
23. Sayari, A., Hamoudi, S., Yang, Y., Moudrakovski, I. L., and Ripmeester, J. R., Chem. Mater. 12, 3857 (2000).CrossRefGoogle Scholar
24. Hamoudi, S., Yang, Y., Moudrakovski, I. L., Lang, S., and Sayari, A., J. Phys. Chem. B 105, 9118 (2001).CrossRefGoogle Scholar
25. Park, S. S., Lee, C. H., Cheon, J. H., and Park, D. H., J. Mater. Chem. 11, 3397 (2001).CrossRefGoogle Scholar
26. Yamamoto, K., Nohara, Y., and Tatsumi, T., Chem. Lett. 648 (2001).CrossRefGoogle Scholar
27. Burleigh, M. C., Dai, S., Hagaman, E. W., and Lin, J. S., Chem. Mater. 13, 2537 (2001).CrossRefGoogle Scholar
28. Muth, O., Schellbach, C., and Fröba, M., Chem. Commun. 2032 (2001).CrossRefGoogle Scholar
29. Asefa, T., Ozin, G. A., Grondey, H., Jaroniec, M., and Kruk, M., Stud. Surf. Sci. Catal. 141, 1 (2002).CrossRefGoogle Scholar
30. Kuroki, M., and Ozin, G. A., Manuscript in preparation.Google Scholar
31. Tertykh, V. A., and Yanishpolskii, V. V., Surfactant Sci. Ser. 90, 523 (2000).Google Scholar
32. Rao, M. S., and Dave, B. C., J. Am. Chem. Soc. 120, 13270 (1998).CrossRefGoogle Scholar
33. Denisova, T. I., Karpenko, G. F., Khalyavka, T. A., Shvetz, D. I., Adsorpt. Sci. Technol. 17, 139 (1999).CrossRefGoogle Scholar
34. Fedorkiw, T., Asefa, T., and Ozin, G. A., Unpublished results.Google Scholar
35. Lim, M. H., Blanford, C. F. and Stein, A., Chem. Mater. 10, 467 (1998).CrossRefGoogle Scholar
36. Fowler, C. E., Burkett, S. L. and Mann, S., Chem. Commun. 1769 (1997).CrossRefGoogle Scholar
37. Asefa, T., Kruk, M., MacLachlan, M. J., Coombs, N., Grondey, H., Jaroniec, M. and Ozin, G. A., Adv. Funct. Mater. 11 (2001) in press.3.0.CO;2-L>CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-2v79d Total loading time: 10.824 Render date: 2020-12-02T02:36:03.406Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Wed Dec 02 2020 02:05:30 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *