No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We present a new approach to engineer the band structure of carbon nanotube field-effect transistors via selected area chemical gating. By exposing the center part or the contacts of the nanotube devices to oxidizing or reducing gases, a good control over the threshold voltage and subthreshold swing has been achieved. Our experiments reveal that NO2 shifts the threshold voltage higher while NH3 shifts it lower for both center-exposed and contact-exposed devices. However, modulations to the subthreshold swing are in opposite directions for center-exposed and contact-exposed devices: NO2 lowers the subthreshold swing of the contact-exposed devices, but increases that of the center-exposed devices; In contrast, NH3 reduces the subthreshold swing of the center-exposed devices, but increases that of the contact-exposed devices. A model has been developed based on Langmuir isotherm, and the experimental results can be well explained.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 18th January 2021. This data will be updated every 24 hours.