Skip to main content Accessibility help
×
Home

Band energy structure arrangement for organic solar cells with metalized deoxyribonucleic acid strands on anode electrode

Published online by Cambridge University Press:  20 June 2011

Ali Bilge Guvenc
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Shirui Guo
Affiliation:
Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A.
Cengiz Ozkan
Affiliation:
Department of Mechanical Engineering, University of California-Riverside, Riverside, CA, U.S.A. Materials Science and Engineering Program, University of California-Riverside, Riverside, CA, U.S.A.
Mihrimah Ozkan
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Get access

Abstract

Deoxyribonucleic acids provide exciting opportunities as templates in self assembled architectures and functionality in terms of optical and electronic properties. In this study, we investigate the effects of metalized DNA sequences in organic bulk-heterojunction solar cells. These effects are characterized via optical, quantum efficiency and current-voltage measurements. We demonstrated that by arranging the band energy structure of the devices via placing metalized deoxyribonucleic acid sequences on the hole collection side of the active layer lead to a 20% increase in the power conversion efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Wohrle, D. and Meissner, D., Advanced Materials 3 (3), 129138 (1991).CrossRefGoogle Scholar
2. Kim, J. Y., Kim, S. H., Lee, H. H., Lee, K., Ma, W. L., Gong, X. and Heeger, A. J., Advanced Materials 18 (5), 572-+ (2006).CrossRefGoogle Scholar
3. Brabec, C. J., Hauch, J. A., Schilinsky, P. and Waldauf, C., Mrs Bulletin 30 (1), 5052 (2005).CrossRefGoogle Scholar
4. Haugeneder, A., Neges, M., Kallinger, C., Spirkl, W., Lemmer, U., Feldmann, J., Scherf, U., Harth, E., Gugel, A. and Mullen, K., Physical Review B 59 (23), 1534615351 (1999).CrossRefGoogle Scholar
5. Morana, M., Wegscheider, M., Bonanni, A., Kopidakis, N., Shaheen, S., Scharber, M., Zhu, Z., Waller, D., Gaudiana, R. and Brabec, C., Advanced Functional Materials 18 (12), 17571766 (2008).CrossRefGoogle Scholar
6. Kannan, B., Castelino, K. and Majumdar, A., Nano Lett 3 (12), 17291733 (2003).CrossRefGoogle Scholar
7. Kymakis, E., Kornilios, N. and Koudoumas, E., J Phys D Appl Phys 41 (16), - (2008).CrossRefGoogle Scholar
8. Huynh, W. U., Dittmer, J. J. and Alivisatos, A. P., Science 295 (5564), 2425-2427 (2002).CrossRefGoogle Scholar
9. Arici, E., Sariciftci, N. S. and Meissner, D., Advanced Functional Materials 13 (2), 165171 (2003).CrossRefGoogle Scholar
10. Xin, H., Kim, F. S. and Jenekhe, S. A., Journal of the American Chemical Society 130 (16), 5424+ (2008).CrossRefGoogle Scholar
11. Kolachure, V. and Jin, M. H. C., presented at the Photovoltaic Specialists Conference, 2008. PVSC ’08. 33rd IEEE, 2008 (unpublished).Google Scholar
12. Steckl, A. J., Nature Photonics 1 (1), 35 (2007).CrossRefGoogle Scholar
13. Schaeffer, J. K., Fonseca, L. R. C., Samavedam, S. B., Liang, Y., Tobin, P. J. and White, B. E., Applied Physics Letters 85 (10), 18261828 (2004).CrossRefGoogle Scholar
14. Kim, Y., Choi, D., Moon, B., Oh, E., Lim, H., Kwon, S. and Ha, C. S., Advanced Engineering Materials 7 (11), 10231027 (2005).CrossRefGoogle Scholar
15. Hashimoto, Y. and Hamagaki, M., Electr Eng Jpn 154 (4), 17 (2006).CrossRefGoogle Scholar
16. Brabec, C. J., Shaheen, S. E., Winder, C., Sariciftci, N. S. and Denk, P., Applied Physics Letters 80 (7), 12881290 (2002).CrossRefGoogle Scholar
17. Wang, X., Pandey, R. R., Singh, K. V., Andavan, G. T. S., Tsai, C., Lake, R., Ozkan, M. and Ozkan, C. S., Nanotechnology 17 (5), 11771183 (2006).CrossRefGoogle Scholar
18. Chaudhary, S., Lu, H. W., Muller, A. M., Bardeen, C. J. and Ozkan, M., Nano Lett 7 (7), 19731979 (2007).CrossRefGoogle Scholar
19. Chaudhary, S., Kim, J. H., Singh, K. V. and Ozkan, M., Nano Lett 4 (12), 24152419 (2004).CrossRefGoogle Scholar
20. Kwon, Y. W., Lee, C. H., Choi, D. H. and Jin, J. I., J Mater Chem 19 (10), 13531380 (2009).CrossRefGoogle Scholar
21. Benedetti, M., Ducani, C., Migoni, D., Antonucci, D., Vecchio, V. M., Romano, A., Verri, T. and Fanizzi, F. P., Possible Incorporation of Free N7-Platinated Guanines in DNA by DNA Polymerases, Relevance for the Cisplatin Mechanism of Action. (Humana Press Inc, 2009).CrossRefGoogle Scholar
22. Johnson, R. C., Li, J. T., Hupp, J. T. and Schatz, G. C., Chemical Physics Letters 356 (5-6), 534540 (2002).CrossRefGoogle Scholar
23. Dennler, G. and Sariciftci, N. S., Proceedings of the Ieee 93 (8), 14291439 (2005).CrossRefGoogle Scholar
24. Miller, A. J., Hatton, R. A. and Silva, S. R. P., Applied Physics Letters 89 (13), - (2006).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-pdn9z Total loading time: 1.12 Render date: 2021-01-22T16:57:22.159Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Band energy structure arrangement for organic solar cells with metalized deoxyribonucleic acid strands on anode electrode
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Band energy structure arrangement for organic solar cells with metalized deoxyribonucleic acid strands on anode electrode
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Band energy structure arrangement for organic solar cells with metalized deoxyribonucleic acid strands on anode electrode
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *