Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-mrc2z Total loading time: 2.241 Render date: 2021-04-17T11:06:18.835Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Atomistic Modeling of Ion Beam Induced Defects in Si: From Point Defects to Continuous Amorphous Layers.

Published online by Cambridge University Press:  17 March 2011

Lourdes Pelaz
Affiliation:
Juan Barbolla Departamento de Electricidad y Electrónica. Universidad de Valladolid E-47011 Valladolid, Spain
Luis A. Marqués
Affiliation:
Juan Barbolla Departamento de Electricidad y Electrónica. Universidad de Valladolid E-47011 Valladolid, Spain
Pedro López
Affiliation:
Juan Barbolla Departamento de Electricidad y Electrónica. Universidad de Valladolid E-47011 Valladolid, Spain
Iván Santos
Affiliation:
Juan Barbolla Departamento de Electricidad y Electrónica. Universidad de Valladolid E-47011 Valladolid, Spain
María Aboy
Affiliation:
Juan Barbolla Departamento de Electricidad y Electrónica. Universidad de Valladolid E-47011 Valladolid, Spain
Get access

Abstract

We present an atomistic model that describes the evolution of ion induced damage ranging from individual defects to continuous amorphous layers. The elementary units used to reproduce the defective zones are Si interstitials, vacancies and the IV pair, which is a local distortion of the Si lattice without any excess or deficit of atoms. More complex defect structures can be formed as these elementary units cluster. The amorphous pockets are treated as agglomerates of IV pairs, whose recrystallization rate depends on the local density of these defects. The local excess or deficit of atoms in the amorphous regions experiences some rearrangement as recrystallization takes place. In sub-amorphizing implants amorphous pockets are disconnected and when they recombine, they leave behind the local excess of Si interstitials and vacancies. When a continuous amorphous layer initially extends to the surface, the excess or deficit atoms within the amorphous layer are swept towards the surface where they are annihilated and only the defects beyond the amorphous-crystalline interface remain.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Olson, G.L. and Roth, J.A., Material Science Reports 3, 78 (1988).CrossRefGoogle Scholar
2. Tai, M.Y. and Streetman, B.G., J. Appl. Phys. 50, 183 (1979).Google Scholar
3. Eaglesham, D.J., Stolk, P.A., Gossmann, H.J., Poate, J.M., Appl. Phys. Lett. 65, 2305 (1994).CrossRefGoogle Scholar
4. Pelaz, L., Jaraiz, M., Gilmer, G.H., Gossmann, H-J., Rafferty, C.S., Eaglesham, D.J., and Poate, J.M., Appl. Phys. Lett 70, 285 (1997).CrossRefGoogle Scholar
5. Cristiano, F., Colombeau, B., and Claverie, A., Def. Diff. Forum 199, 183 (2000).Google Scholar
6. Robertson, L.S., Jones, K.S., Rubin, L.M., Jackson, J., J. Appl. Phys. 87, 2910 (2000).CrossRefGoogle Scholar
7. Hobler, G. and Rafferty, C.S., Mat. Res. Symp.Proc., 123 (1999).Google Scholar
8. Lampin, E., Senez, V., Claverie, A., J. Appl. Phys. 85, 8137 (1999).CrossRefGoogle Scholar
9. Avci, I., Law, M.E., Kuryliw, E., Saavedra, A.F., Jones, K.S., J. Appl. Phys. 95, 2452 (2004).CrossRefGoogle Scholar
10. Hobler, G. and Otto, G., Materials Science in Semiconductor Processing. 6, 1 (2003).CrossRefGoogle Scholar
11. Tang, M., Colombo, L., Zhu, J., and Rubia, T. Diaz de la, Phys. Rev. B 55, 4279 (1997).Google Scholar
12. Marqués, L.A., Pelaz, L., Hernandez, J., Barbolla, J., and Gilmer, G.H., Phys. Rev. B 64, 045214 (2001).CrossRefGoogle Scholar
13. Caturla, M.-J., Rubia, T. D., Marqués, L.A., and Gilmer, G.H., Phys. Rev. B 54, 16683 (1996).CrossRefGoogle Scholar
14. Marqués, L.A., Pelaz, L., Aboy, M., Enriquez, L., J. Barbolla. Phys. Rev. Lett. 91, 135504 (2003).CrossRefGoogle Scholar
15. Jaraiz, M., Pelaz, L., Rubio, E., Barbolla, J., Gilmer, G.H., Eaglesham, D.J., Gossmann, H.J., and Poate, J.M., Mat. Res. Soc. Symp. Proc. 54, 532 (1998).Google Scholar
16. Masaki, Y., LeComber, P.G., and Fitzgerald, A.G., J. Appl. Phys. 74, 129 (1993).CrossRefGoogle Scholar
17. Pelaz, L., Marqués, L.A., Gilmer, G.H., Jaraiz, M., Barbolla, J., Nucl. Instrum. Methods Phys. Res. B 180, 12 (2001).CrossRefGoogle Scholar
18. Donnelly, S.E., Birtcher, R.C., Vishnyakov, V.M., Carter, G., Appl. Phys. Lett. 82, 1860 (2003).CrossRefGoogle Scholar
19. Battaglia, A., Priolo, F., Rimini, E., and Ferla, G., Appl. Phys. Lett 56, 2622 (1990).CrossRefGoogle Scholar
20. Campisano, S.U., Coffa, S., Raineri, V., Priolo, F., Rimini, E.. Nucl. Instr. Meth. B 80–81, 514 (1993).CrossRefGoogle Scholar
21. Goldberg, R.D., Williams, J.S., and Elliman, R.G., Nucl. Instrum. Methods Phys. Res. B 106, 242 (1995).CrossRefGoogle Scholar
22. Pelaz, L., Marques, L.A., Aboy, M., Barbolla, J., Gilmer, G.H., Appl. Phys. Lett. 82, 2038 (2003).CrossRefGoogle Scholar
23. Rubia, T. Diaz de la and Gilmer, G.H., Phys. Rev. Lett. 74, 2507 (1995).CrossRefGoogle Scholar
24. Sadana, D.K., Stratham, M., Washburn, J., Booker, G.R., J. Appl. Phys. 51, 5718 (1980).CrossRefGoogle Scholar
25. Pelaz, L., Gilmer, G.H., Venezia, V.C., Gossmann, H.J., Jaraiz, M., Barbolla, J., Appl. Phys. Lett. 74, 2017 (1999).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Atomistic Modeling of Ion Beam Induced Defects in Si: From Point Defects to Continuous Amorphous Layers.
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Atomistic Modeling of Ion Beam Induced Defects in Si: From Point Defects to Continuous Amorphous Layers.
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Atomistic Modeling of Ion Beam Induced Defects in Si: From Point Defects to Continuous Amorphous Layers.
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *