Skip to main content Accessibility help
×
Home

Application of RTP-CVD Technology to Ulsi Device Fabrication

Published online by Cambridge University Press:  28 February 2011

K. H. Jung
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
T. Y. Hsieh
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
D. L. Kwong
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
Get access

Abstract

Rapid thermal processing chemical vapor deposition (RTP-CVD) has received considerable attention as a novel in-situ multi-processing tool capable of meeting the stringent requirements of ULSI device fabrication. In this paper, we review the progress made in developing and applying RTP-CVD to ULSI device fabrication. Research areas discussed include epitaxial Si and poly-Si growth, in-situ doping, selective growth, in-situ multi-processing, and novel dielectrics. In addition, the extension of RTP-CVD to novel materials such as GexSi1−x has produced device quality films with successful application in HBTs and Si-based optoelectronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Singh, R., J. Appl. Phys. 63, R59 (1988).CrossRefGoogle Scholar
2 Lee, S. K., Ku, Y. H., and Kwong, D. L., Appl. Phys. Lett. 54, 1775 (1989).CrossRefGoogle Scholar
3 Gibbons, J. F., Gronet, C. M., and Williams, K. E., Appl. Phys. Lett. 47, 721 (1985).CrossRefGoogle Scholar
4 Green, M. L., Brasen, D., Luftman, H., and Kannan, V. C., J. Appl. Phys. 65, 2558 (1989).CrossRefGoogle Scholar
5 Hsieh, T. Y., Jung, K. H., Kwong, D. L., and Lee, S. K., J. Electrochem. Soc. 138, 1188 (1991).CrossRefGoogle Scholar
6 Gronet, C. M., Sturm, J. C., Williams, K. E., Gibbons, J. F., and Wilson, S. D., Appl. Phys. Lett. 48, 1012 (1986).CrossRefGoogle Scholar
7 Sturm, J. C., Gronet, C. M., and Gibbons, J. F., IEEE Electron Dev. Lett. EDL–7, 282 (1986).CrossRefGoogle Scholar
8 Lee, S. K., Ku, Y. H., and Kwong, D. L., ULSI Sci. Technol., PV 89–9, 233 (1989).Google Scholar
9 Hsieh, T. Y., Chun, H. G., and Kwong, D. L., Appl. Phys. Lett. 55, 2408 (1989).CrossRefGoogle Scholar
10 Gronet, C. M., King, C. A., Opyd, W., Gibbons, J. F., Wilson, S. D., and Hull, R., J. Appl. Phys. 61, 2407 (1987).CrossRefGoogle Scholar
11 Noble, D. B., Hoyt, J. L., King, C. A., Gibbons, J. F., Kamins, T. I., and Scott, M. P., Appl. Phys. Lett. 56, 51 (1990).CrossRefGoogle Scholar
12 Ting, W., Lin, S. N., and Kwong, D. L., Appl. Phys. Lett. 55, 2313 (1989).CrossRefGoogle Scholar
13 Smith, F. W. and Ghidini, G., J. Electrochem. Soc. 129, 1300 (1982).CrossRefGoogle Scholar
14 Ghidini, G. and Smith, F. W., J. Electrochem. Soc. 131, 2924 (1984).CrossRefGoogle Scholar
15 Jung, K. H., Hsieh, T. Y., and Kwong, D. L., Appl. Phys. Lett. 58, 2348 (1991); and unpublished.CrossRefGoogle Scholar
16 Apte, P. P., Moslehi, M. M., Yeakley, R., and Saraswat, K. C., Extended Abstracts, PV 91–1, 573 (Pennington: The Electrochemical Society, Inc. 1991).Google Scholar
17 Garone, P. M., Sturm, J. C., Schwartz, P. V., Schwarz, S. A., and Wilkens, B. J., Appl. Phys. Lett. 56, 1275 (1990).CrossRefGoogle Scholar
18 Lee, S. K., Ku, Y. H., Hsieh, T. Y., Jung, K. H., Kwong, D. L., and Spratt, D. B., Appl. Phys. Lett. 57, 1628 (1990).CrossRefGoogle Scholar
19 Van Wijnen, P. J. and Gardner, R. D., IEEE Electron Dev. Lett. EDL–11, 149 (1990).CrossRefGoogle Scholar
20 Hsieh, T. Y., Jung, K. H., Kim, Y. M., and Kwong, D. L., Appl. Phys. Lett. 58, 80 (1991).CrossRefGoogle Scholar
21 Park, W. W., Becker, M. F., and Walser, R. M., J. Mater. Res. 3, 298 (1988).CrossRefGoogle Scholar
22 Kubiak, R. A. A., Leong, W. Y., and Parker, E. H. C., J. Vac. Sci. Technol. B3, 592 (1985).CrossRefGoogle Scholar
23 Borland, J. O., IEDM TechnicalDigest, 12 (1987).Google Scholar
24 Ishitani, A., Kitajima, H., Tanno, K., and Tsuya, H., Microelectronic Engineering 4, 3 (1986).CrossRefGoogle Scholar
25 Kasai, N., Endo, N., Ishitani, A., and Kitajima, H., IEEE Trans. Electron Dev. ED–34, 1331 (1987).CrossRefGoogle Scholar
26 Aoki, M., Ishii, T., Yoshimura, T., Kiyota, Y., Iijima, S., Yamanaka, T., Kure, T., Ohyu, K., Nishida, T., Okazaki, S., Seki, K., and Shimohigashi, K., IEDM Technical Digest, 939 (1990).Google Scholar
27 Sturm, J. C., Gronet, C. M., King, C. A., Wilson, S. D., and Gibbons, J. F., IEEE Electron Dev. Lett. EDL.7, 577 (1986).CrossRefGoogle Scholar
28 Lee, S. K., Ku, Y. H., Hsieh, T. Y., Jung, K., and Kwong, D. L., Appl. Phys. Lett. 57, 273 (1990).CrossRefGoogle Scholar
29 Hsieh, T. Y., Jung, K. H., Kwong, D. L., and Spratt, D. B., Appl. Phys. Lett. 57, 872 (1990).CrossRefGoogle Scholar
30 Borland, J. and Drowley, C., Solid State Technol. 28, 141 (1985).Google Scholar
31 Liu, S. T., Chan, L., and Borland, J. O., Proceedings of the Tenth International Conference on CVD 87-8, ed. by Cullen, G. W., 428 (Pennington: The Electrochemical Society, 1987).Google Scholar
32 Kamins, T., Poly-Silicon for Integrated Circuit Applications, (Boston: Kluwer Academic Publishers, 1988).CrossRefGoogle Scholar
33 Hoyt, J. L., Crabbd, E. F., Pease, R. F. W., and Gibbons, J. F., and Marshall, A. F., J. Electrochem. Soc. 135, 1773 (1988).CrossRefGoogle Scholar
34 Hsieh, T. Y., Chun, H. G., Kwong, D. L., and Spratt, D. B., Appl. Phys. Lett. 56, 1778 (1990).CrossRefGoogle Scholar
35 Sturm, J. C., Gronet, C. M., and Gibbons, J. F., J. Appl. Phys. 59, 4180 (1986).CrossRefGoogle Scholar
36 King, C. A., Gronet, C. M., Gibbons, J. F., and Wilson, S. D., IEEE Electron Dev. Lett. EDL–9, 229 (1988).CrossRefGoogle Scholar
37 King, C. A., Hoyt, J. L., Gronet, C. M., Gibbons, J. F., Scott, M. P., and Turner, J., IEEE Electron Dev. Lett. EDL–10, 52 (1989).CrossRefGoogle Scholar
38 Watanabe, T., Ishikawa, M., and Kumagai, J., IEDM Technical Digest, 173 (1984).Google Scholar
39 Young, K. K., Hu, C., and Oldham, W., IEEE Elec. Dev. Lett. EDL–9, 616 (1988).CrossRefGoogle Scholar
40 Weinberg, Z. A., Stein, K. J., Nguyen, T. N., and Sun, J. Y., Appl. Phys. Lett. 57, 1248 (1990).CrossRefGoogle Scholar
41 Aminzadeh, M., Nozaki, S., and Giridhar, R., IEEE Trans. Electron Dev. ED–35, 459 (1988).CrossRefGoogle Scholar
42 Roy, P. K., Doklan, R. H., Martin, E. P., Shive, S. F., and Sinha, A. K., IEDM Technical Digest, 714 (1988).Google Scholar
43 Jung, K. H., Kim, Y. M., and Kwong, D. L., Appl. Phys. Lett. 56, 1775 (1990).CrossRefGoogle Scholar
44 Green, M. L., Weir, B. E., Brasen, D., Hsieh, Y. F., Higashi, G., Feygenson, A., Feldman, L. C., and Headrick, R. L., J. Appl. Phys. 69, 745 (1991).CrossRefGoogle Scholar
45 Hull, R., Bean, J. C., Eaglesham, D. J., Bonar, J. M., and Buescher, C., Thin Solid Films 183, 117 (1989).CrossRefGoogle Scholar
46 Zhong, Y., Oztiirk, M. C., Grider, D. T., Wortman, J. J., and Littlejohn, M. A., Appl. Phys. Lett. 57, 2092 (1990).CrossRefGoogle Scholar
47 Kamins, T. I., Nauka, K., Kruger, J. B., Hoyt, J. L., King, C. A., Noble, D. B., Gronet, C. M., and Gibbons, J. F., IEEE Electron Dev. Lett. 10, 503 (1989).CrossRefGoogle Scholar
48 Prinz, E. J. and Sturm, J. C., Device Research Conference, session IIB-5 (1991).Google Scholar
49 Mayer, R. A., Jung, K. H., Hsieh, T. Y., Kwong, D. L., and Campbell, J. C., Appl. Phys. Lett. 58, 2744 (1991).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-fznx4 Total loading time: 0.421 Render date: 2021-01-28T03:38:55.619Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Application of RTP-CVD Technology to Ulsi Device Fabrication
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Application of RTP-CVD Technology to Ulsi Device Fabrication
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Application of RTP-CVD Technology to Ulsi Device Fabrication
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *