Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-sbc4w Total loading time: 1.591 Render date: 2021-02-28T23:05:37.244Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Advanced Al Damascene Process for Fine Trench Under 70nm Design Rule

Published online by Cambridge University Press:  01 February 2011

Sung Ho Han
Affiliation:
Process Development Team, Semiconductor R&D Center, Samsung Electronics Co. Ltd., San#24 Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyungki-Do 449-711, Korea Phone: 82-31-209-3663, Fax: 82-31-209-6299, E-mail: shane.han@samsung.com
Kyung-In Choi
Affiliation:
Process Development Team, Semiconductor R&D Center, Samsung Electronics Co. Ltd., San#24 Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyungki-Do 449-711, Korea Phone: 82-31-209-3663, Fax: 82-31-209-6299, E-mail: shane.han@samsung.com
Sera Yun
Affiliation:
Process Development Team, Semiconductor R&D Center, Samsung Electronics Co. Ltd., San#24 Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyungki-Do 449-711, Korea Phone: 82-31-209-3663, Fax: 82-31-209-6299, E-mail: shane.han@samsung.com
Jeong Heon Park
Affiliation:
Process Development Team, Semiconductor R&D Center, Samsung Electronics Co. Ltd., San#24 Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyungki-Do 449-711, Korea Phone: 82-31-209-3663, Fax: 82-31-209-6299, E-mail: shane.han@samsung.com
Won Sok Lee
Affiliation:
Process Development Team, Semiconductor R&D Center, Samsung Electronics Co. Ltd., San#24 Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyungki-Do 449-711, Korea Phone: 82-31-209-3663, Fax: 82-31-209-6299, E-mail: shane.han@samsung.com
Sang Woo Lee
Affiliation:
Process Development Team, Semiconductor R&D Center, Samsung Electronics Co. Ltd., San#24 Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyungki-Do 449-711, Korea Phone: 82-31-209-3663, Fax: 82-31-209-6299, E-mail: shane.han@samsung.com
Gil Heyun Choi
Affiliation:
Process Development Team, Semiconductor R&D Center, Samsung Electronics Co. Ltd., San#24 Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyungki-Do 449-711, Korea Phone: 82-31-209-3663, Fax: 82-31-209-6299, E-mail: shane.han@samsung.com
Change Kee Hong
Affiliation:
Process Development Team, Semiconductor R&D Center, Samsung Electronics Co. Ltd., San#24 Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyungki-Do 449-711, Korea Phone: 82-31-209-3663, Fax: 82-31-209-6299, E-mail: shane.han@samsung.com
Sung Tae Kim
Affiliation:
Process Development Team, Semiconductor R&D Center, Samsung Electronics Co. Ltd., San#24 Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyungki-Do 449-711, Korea Phone: 82-31-209-3663, Fax: 82-31-209-6299, E-mail: shane.han@samsung.com
Uin Chung
Affiliation:
Process Development Team, Semiconductor R&D Center, Samsung Electronics Co. Ltd., San#24 Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyungki-Do 449-711, Korea Phone: 82-31-209-3663, Fax: 82-31-209-6299, E-mail: shane.han@samsung.com
Joo Tae Moon
Affiliation:
Process Development Team, Semiconductor R&D Center, Samsung Electronics Co. Ltd., San#24 Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyungki-Do 449-711, Korea Phone: 82-31-209-3663, Fax: 82-31-209-6299, E-mail: shane.han@samsung.com
Byung-Il Ryu
Affiliation:
Process Development Team, Semiconductor R&D Center, Samsung Electronics Co. Ltd., San#24 Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyungki-Do 449-711, Korea Phone: 82-31-209-3663, Fax: 82-31-209-6299, E-mail: shane.han@samsung.com
Corresponding
E-mail address:
Get access

Abstract

Due to a rapid shrinkage in memory devices, backned of the line process experiences great difficulties, especially Al metallization. Furthermore, there is a continuous demands in low line resistance in order to promote device performances. In this article, Al damascene process is proposed as compared to Al patterning process, which suffers from inherent pattering issue at a fine pitch under 70nm. The most difficulties in the development of Al damascene process were to form a stable and void free Al in fine trench and to obtain scratch and corrosions free Al surface. In this study, 50nm beyond fill was successfully achieved by “bottom up growth” of CVD Al. For the process, CVD Al by using Methylpyrroridine Alane (MPA) precursor was deposited on a stacked film of CVD TiN and PVD TiN as a wetting layer, which was followed by PVD Al and reflow, then the Al surface was polished with colloidal silica based slurry.

In addition, electrical property of Al scheme and W scheme was compared with damascene pattern, along with which we demonstrated that around 36% decrease in parasitic capacitance is achievable by decrease of metal line height from 3500A to 1000A on simulation test implying that device performance could be enhanced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Lee, J.M.et al., Proc. of the International Interconnect Technology Conference, 72 (2001)Google Scholar
2. Seo, Jung Hunet al., IITC2003Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 5 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Advanced Al Damascene Process for Fine Trench Under 70nm Design Rule
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Advanced Al Damascene Process for Fine Trench Under 70nm Design Rule
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Advanced Al Damascene Process for Fine Trench Under 70nm Design Rule
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *