Skip to main content Accessibility help
×
Home

The Adsorption Behaviors of Citric Acid on Abrasive Particles in Cu CMP Slurry

Published online by Cambridge University Press:  01 February 2011

Young-Jae Kang
Affiliation:
Div. of Materials and Chemical Engineering, Hanyang University, Ansan, 426-791, Korea
Yi-Koan Hong
Affiliation:
Div. of Materials and Chemical Engineering, Hanyang University, Ansan, 426-791, Korea
Jae-Hoon Song
Affiliation:
Div. of Materials and Chemical Engineering, Hanyang University, Ansan, 426-791, Korea
In-Kwon Kim
Affiliation:
Div. of Materials and Chemical Engineering, Hanyang University, Ansan, 426-791, Korea
Jin-Goo Park
Affiliation:
Div. of Materials and Chemical Engineering, Hanyang University, Ansan, 426-791, Korea
Get access

Abstract

The interaction between Cu surface and abrasive particles in slurry solution was characterized. The adsorption behavior of the citrate ions was dependent on the pH of the slurry and the concentration of the citric acid. The adsorption of citrate ions generated a highly negative charge on the alumina surface and shifted isoelectric point (IEP) to lower pH values. The Cu removal rate of alumina slurry was higher than that of colloidal silica based slurry in the investigated pH ranges. Although lower friction forces of Cu were observed in alumina based slurry of pH 4, 6 and 8, a higher friction force was observed at pH 2. This high friction force was attributed to the positive zeta potential and greater adhesion force of particle. It indicates that the magnitudes of particle adhesions on Cu surfaces in slurries can be directly related to the frictional behavior during CMP process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Eom, D. H., Ph. D. Dissertation Hanyang University Seoul, Korea. (2005)Google Scholar
[2] Jindal, A., Babu, S. V., Journal of the Electrochemical Society, 151 (10) G709–G716 (2004)CrossRefGoogle Scholar
[3] Chen, J. C., Tsai, W. T., Materials Chemistry and Physics, 87 (2004) 387393 CrossRefGoogle Scholar
[4] Hiber, P. C., Graule, T. J., Gauckler, L. J., Journal of America Cerimic Society. 79 (7) 1857–67 (1996)CrossRefGoogle Scholar
[5] Park, J. G., Lee, S. H., Kim, H. G., Proceeding of 2005 Materials Research Society 566 (1999) 173178 Google Scholar
[6] Hong, Y. K., Han, J. H., Lee, J. H., Park, J. G., Busnaina, A. A., Solid State Phenomena 103-104 (2005) pp.369372 Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 24th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-frjnl Total loading time: 0.218 Render date: 2021-01-24T13:51:20.931Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Adsorption Behaviors of Citric Acid on Abrasive Particles in Cu CMP Slurry
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Adsorption Behaviors of Citric Acid on Abrasive Particles in Cu CMP Slurry
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Adsorption Behaviors of Citric Acid on Abrasive Particles in Cu CMP Slurry
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *