Skip to main content Accessibility help
×
Home

Activation of Implanted Poly Gates by Short Cycle Time Annealing

Published online by Cambridge University Press:  17 March 2011


A. T. Fiory
Affiliation:
Bell Laboratories, Lucent Technologies Inc., Murray Hill NJ 07974
K. K. Bourdelle
Affiliation:
Bell Laboratories, Lucent Technologies Inc., Orlando FL 32819

Abstract

Amorphous silicon films with B, P, and As implants were activated with thermal anneals that include spiking to the maximum temperature. Films were grown over thermal oxide by chemical vapor deposition as two separately implanted 50-nm layers for manipulating dopant placement and diffusion. Electrical activation was determined by Hall van der Pauw and MOS C-V, and dopant diffusion was profiled by secondary ion mass spectroscopy (SIMS). Flat-band voltage was used to benchmark relative thermal budgets for p-type poly. Temperature-time relationships are used to deduce effective activation energies.


Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Suzuki, K., et al. J. Electrochem. Soc. 142, 2786 (1995).10.1149/1.2050093CrossRefGoogle Scholar
[2] Bevk, J., et al. 1998 Symp. VSLI Tech. Dig., pp. 7475 (IEEE, 1998).Google Scholar
[3] Krisch, K. S., Bude, J. D., and Manchanda, L., IEEE Electron Device Lett. 17, 521 (1996).10.1109/55.541768CrossRefGoogle Scholar
[4] Fiory, A. T. and Bourdelle, K. K., Appl. Phys. Lett. 74, 2658 (1999).10.1063/1.123929CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 1st December 2020. This data will be updated every 24 hours.

Hostname: page-component-6d4bddd689-7nj2g Total loading time: 16.219 Render date: 2020-12-01T09:25:37.710Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Dec 01 2020 09:00:06 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Activation of Implanted Poly Gates by Short Cycle Time Annealing
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Activation of Implanted Poly Gates by Short Cycle Time Annealing
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Activation of Implanted Poly Gates by Short Cycle Time Annealing
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *