Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T13:50:14.140Z Has data issue: false hasContentIssue false

AB Initio Study of the Ge Adsorption and Diffusion on Si (100) Surface

Published online by Cambridge University Press:  15 February 2011

V. Milman
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
S.J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
D.E. Jesson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
M.C. Payne
Affiliation:
Department of Physics, Cambridge University, Cambridge CB3 OHE, UK
I. Stich
Affiliation:
Department of Physics, Cambridge University, Cambridge CB3 OHE, UK
Get access

Abstract

We identify the binding sites for adsorption of a single Ge atom on the Si (100) surface using ab initio total energy calculations. The calculated diffusion barriers are in excellent agreement with experimental estimates. Using a large supercell we resolve the controversy regarding the binding geometry and migration path for the adatom, and investigate the influence of the adatom on the buckling of Si dimers. The adatom induces a buckling defect that is frequently observed using scanning tunneling Microscopy (STM); therefore the study of single adatoms may be experimentally accessible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jesson, D.E., Pennycook, S.J., and Baribeau, J.-M., Phys. Rev. Lett. 66, 750 (1991).Google Scholar
2. Jesson, D.E., Pennycook, S.J., Baribeau, J.-M., and Houghton, D.C., Phys. Rev. Lett. 68, 2062 (1992).CrossRefGoogle Scholar
3. Lagally, M.G., Jpn. J. Appl. Phys. 32, 1493 (1993);Google Scholar
Mo, Y.-W. and Lagally, M.G., Surf. Sci. 248, 313 (1991);Google Scholar
Lagally, M.G. (private communication), 1993.Google Scholar
4. Knall, J. and Pethica, J.B., Surf. Sci. 265, 156 (1992);Google Scholar
Iwawaki, F., Tomitori, M., and Nishikawa, O., Ultramicroscopy 42–44, 902 (1992).CrossRefGoogle Scholar
5. Mo, Y.W., Kleiner, J., Webb, M.B., and Lagally, M.G., Phys. Rev. Lett. 66, 1998 (1991).CrossRefGoogle Scholar
6. Brocks, G., Kelly, P.J., and Car, R., Phys. Rev. Lett. 66, 1729 (1991).Google Scholar
7. Miyazaki, T., Hiramoto, H., and Okazaki, M., Jpn. J. Appl. Phys. 29, 11165 (1990). These results correspond to 50% coverage rather than to the isolated adatom case.Google Scholar
8. Roland, C. and Gilmer, G.H., Phys. Rev. B 46, 13428 (1992).Google Scholar
9. Srivastava, D. and Garrison, B.J., J. Chem. Phys. 95, 6885 (1991).Google Scholar
10. Lu, Y.-T., Zhang, Z.Y., and Metiu, H., Surf. Sci. 257, 199 (1991).Google Scholar
11. Huang, Z.-H. and Allen, R.E., J. Vac. Sci. Technol. A 9, 876 (1991).Google Scholar
12. Stillinger, F. and Weber, T.A., Phys. Rev. B 36, 1208 (1987).Google Scholar
13. Tersoff, J., Phys. Rev. Lett. 56, 632 (1986).Google Scholar
14. Wolkow, R.A., Phys. Rev. Lett. 68, 2636 (1992).Google Scholar
15. Roberts, N. and Needs, R.J., Surf. Sci. 236, 112 (1991).Google Scholar
16. Dabrowski, J. and Scheffler, M., Appl. Surf. Sci. 56–58, 15 (1992).Google Scholar
17. Northrup, J.E., Phys. Rev. B 47, 10032 (1993).Google Scholar
18. Srivastava, D. and Garrison, B.J., Phys. Rev. B 46, 1472 (1992).Google Scholar
19. Roland, C. and Gilmer, G.H., Phys. Rev. B 47, 16286 (1993).Google Scholar
20. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D., Rev. Mod. Phys. 64, 1045 (1992).CrossRefGoogle Scholar
21. Perdew, J.P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
22. Kerker, G.P., J. Phys. C 13, L189 (1980).Google Scholar
23. Kleinman, L. and Bylander, D.M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
24. King-Smith, R.D., Payne, M.C., and Lin, J.S., Phys. Rev. B 44, 13063 (1991).Google Scholar
25. Lin, J.S., Qteish, A., Payne, M.C., and Heine, V., Phys. Rev. B 47, 4174 (1993).Google Scholar
26. Clarke, L.J., Stich, I., and Payne, M.C., Comp. Phys. Commun. 72, 14 (1992).Google Scholar
27. We used the “Faultpack” package by Cline, A. and Renka, R. to perform triangulation on irregular grid using the values of the gradient.Google Scholar
28. We also found two possible B-site configurations with the adatom 0.5 Å higher than the dimers, B*, or 0.9 Å below the dimers level, B0. The B0 configuration is more stable by 0.18 eV. A similar double-well energy profile was reported in the SW simulations of the Si adsorption at the B site (Refs. 8 and 10).Google Scholar