Skip to main content Accessibility help
×
Home

400 element ErAs:InGaAs/InGaAlAs superlattice power generator

  • Gehong Zeng (a1), Je-Hyeong Bahk (a2), John E. Bowers (a3), Joshua M. O. Zide (a4), Arthur C. Gossard (a5), Yan Zhang (a6), Rajeev Singh (a7), Zhixi Bian (a8), Ali Shakouri (a9), Woochul Kim (a10), Suzanne Singer (a11) and Arun Majumdar (a12)...

Abstract

We report the fabrication and characterization of thin film power generators composed 400 p- and n-type ErAs:InGaAs/InGaAlAs superlattice thermoelectric elements. The thermoelectric elements incorporate erbium arsenide metallic nanoparticles into the semiconductor superlattice structure to provide charge carriers and create scattering centers for phonons. 10 µm p- and n-type InGaAs/InGaAlAs superlattices with embedded ErAs nano-particles were grown on InP substrates using molecular beam epitaxy. Thermal conductivity values were measured using the 3ω method and cross-plane Seebeck coefficients were determined using Seebeck device test patterns. 400 element ErAs:InGaAs/InGaAlAs thin film power generators were fabricated from superlattice elements 10 µm thick and 200 µm × 200 µm in area. The output power was 4.7 milliwatts for an external electrical load resistor of 150 Ω at about 80 K temperature difference drop across the generator. We discuss the limitations to the generator's performance and provide suggestions for further improvement.

Copyright

References

Hide All
1. Snyder, G. J., Lim, J. R., Huang, C. K., and Fleurial, J. P., “Thermoelectric microdevice fabricated by a MEMS-like electrochemical process,” Nature Materials, vol. 2, pp. 528531, 2003.
2. Dughaish, Z. H., “Lead telluride as a thermoelectric material for thermoelectric power generation,” Physica B-Condensed Matter, vol. 322, pp. 205223, 2002.
3. Kim, I. H., “(Bi,Sb)(2)(Te,Se)(3)-based thin film thermoelectric generators,” Materials Letters, vol. 43, pp. 221224, 2000.
4. Rowe, D. M., CRC handbook of thermoelectronics. New York: CRC Press, 1995.
5. Zeng, G., Bowers, J. E., Zhang, Y., and Shakouri, A., “SiGe/Si superlattice power generators,” the proceedings of 24th International Conference on Thermoelectrics, pp. 164167, Clemson University, South Carolina, USA, 2005.
6. Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B., “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature, vol. 413, pp. 597602, 2001.
7. Humphrey, T. E. and Linke, H., “Reversible thermoelectric nanomaterials,” Physical Review Letters, vol. 94, pp. 096601–4, 2005.
8. Hicks, L. D. and Dresselhaus, M. S., “Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit,” Physical Review B, vol. 47, pp. 1272712731, 1993.
9. Harman, T. C., Taylor, P. J., Walsh, M. P., and LaForge, B. E., “Quantum dot superlattice thermoelectric materials and devices,” Science, vol. 297, pp. 22292232, 2002.
10. Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R., and Phillpot, S. R., “Nanoscale thermal transport,” Journal of Applied Physics, vol. 93, pp. 793818, 2003.
11. Koga, T., Sun, X., Cronin, S. B., and Dresselhaus, M. S., “Carrier pocket engineering to design superior thermoelectric materials using GaAs/AlAs superlattices,” Applied Physics Letters, vol. 73, pp. 29502952, 1998.
12. Koga, T., Sun, X., Cronin, S. B., and Dresselhaus, M. S., “Carrier pocket engineering applied to “strained” Si/Ge superlattices to design useful thermoelectric materials,” Applied Physics Letters, vol. 75, pp. 24382440, 1999.
13. Shakouri, A. and Bowers, J. E., “Heterostructure integrated thermionic coolers,” Applied Physics Letters, vol. 71, pp. 12341236, 1997.
14. Kelly, M. J., Low-dimensional semiconductors: materials, physics, technology, devices. New York: Oxford University Press, 1995.
15. Markel, V. A. and George, T. F., Optics of Nanostructured Materials (Wiley Series in Lasers and Applications): Wiley-Interscience, 2000.
16. Tritt, T. M., “Recent trends in thermoelectric materials research III -Semiconductors and semimetals - Preface,” Recent Trends in Thermoelectric Materials Research Iii, vol. 71, pp. IX–XIV, 2001.
17. Hicks, L. D. and Dresselhaus, M. S., “Thermoelectric Figure of Merit of a One-Dimensional Conductor,” Physical Review B, vol. 47, pp. 1663116634, 1993.
18. Huxtable, S. T., Abramson, A. R., Tien, C. L., Majumdar, A., LaBounty, C., Fan, X., Zeng, G. H., Bowers, J. E., Shakouri, A., and Croke, E. T., “Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices,” Applied Physics Letters, vol. 80, pp. 17371739, 2002.
19. Vashaee, D. and Shakouri, A., “Improved thermoelectric power factor in metalbased superlattices,” Physical Review Letters, vol. 92, pp. 106103/1, 2004.
20. Zide, J. M., Klenov, D. O., Stemmer, S., Gossard, A. C., Zeng, G., Bowers, J. E., Vashaee, D., and Shakouri, A., “Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles,” Applied Physics Letters, vol. 87, pp. 112102, 2005.
21. Zeng, G., Bowers, J. E., Zhang, Y., Shakouri, A., Zide, J. M., Gossard, A. C., Kim, W., and Majumdar, A., “ErAs/InGaAs superlattice Seebeck coefficient,” the proceedings of 24th International Conference on Thermoelectrics, pp. 485488, Clemson University, South Carolina, USA, 2005.
22. Cahill, D. G., “Thermal-Conductivity Measurement from 30-K to 750-K - the 3-Omega Method,” Review of Scientific Instruments, vol. 61, pp. 802808, 1990.

Keywords

400 element ErAs:InGaAs/InGaAlAs superlattice power generator

  • Gehong Zeng (a1), Je-Hyeong Bahk (a2), John E. Bowers (a3), Joshua M. O. Zide (a4), Arthur C. Gossard (a5), Yan Zhang (a6), Rajeev Singh (a7), Zhixi Bian (a8), Ali Shakouri (a9), Woochul Kim (a10), Suzanne Singer (a11) and Arun Majumdar (a12)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed