Skip to main content Accessibility help
×
Home

3-Mercaptopropionic Acid modified Porous Silicon Substrate used in Hyperammonemia

  • Dong-hwa Yun (a1), Jun-Hyoung Chang (a2), Woo-Jin Lee (a3) and Suk-In Hong (a4)

Abstract

Amperometric urea sensor is more suitable than optical and potentiometric urea sensor to diagnose hyperammonemia. However, because sensitivity in low concentration decreases remarkably, despite amperometric urea sensor has been studied for a long time it has not been applied for clinical diagnosis. In this paper, a new structure for an amperometric urea sensor was fabricated by MEMS, electrochemical etching, and electrostatic covalent binding techniques. Until now most amperometric urea sensors have had a membrane fixed on top of the transducer. That method often leads to malfunction of the sensor, arising from problems such as inadequate membrane adhesion, insufficient mechanical stability, and low sensitivity. To solve these kinds of problems, urease (Urs) was immobilized by electrostatic covalent binding method on the porous silicon (PSi) substrate coated self-assembled monolayer (SAM). Electrostatic covalent binding method was used to keep anisotropic orientation of urease on SAM.

Copyright

References

Hide All
1. Senillou, A., Jaffrezic-Renault, A., Martelet, C. and Cosnier, S., Talanta 50, 219 (1999).
2. Koncki, R., Radomska, A. and Glab, S., Talanta 52, 13 (2002).
3. Milardovic, S., Kruhak, I. and Grabaric, B. S., Laboratory Robotics and Automation 11, 266 (1999).
4. Lobanov, O. V., Dubrovsky, T. B., Savitsky, A. P., Akindinov, D. E., Alexeev, I. V. and Savransky, V. V., Thin Solid Films 259, 85 (1995).
5. Malitesta, C., F. Palmisano and Torsi, L., Analytical Chemistry 62, 2735 (1990).
6. Campanella, L., Mazzei, F., Sammartino, M. P. and Tommassetti, M., Bioelectrochemistry and Bioenergetics 23, 195 (1990).
7. Ho, W. O., Krause, S., McNeil, C. J., Pritchard, J. A., Armstrong, R. D., Athey, D. and Rawson, K., Analytical Chemistry 71, 1940 (1999).
8. Hirose, S., Hayashi, M., Tamura, N., Kamidate, T., Karube, I. and Suzuki, S., Analytica Chimica Acta 151, 377 (1983).
9. Osaka, T., Komaba, S., Fujino, Y., Matsuda, T. and Satoh, I., Journal of the Electrochemical Society 146(2), 615 (1999).
10. Singhal, R., Gambhir, A., Pandey, M. K., Annapoorni, S. and Malhotra, B. D., Biosensor and Bioelectronics 17, 697 (2002).
11. Mascini, M., Iannello, M. and Palleschi, G., Analytica Chimica Acta 146, 135 (1983).
12. Kenji, Y., Yusuke, F., Tetsuya, O. and Ikuo, S., Sensors and Actuators B 76, 152 (2001).
13. Kallury, K. M. R., Lee, W. E. and Thompson, M., Analytical Chemistry 64(9), 1062 (1992).
14. Wirde, M. and Gelius, U., Langmuir 15(19), 6370 (1999).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed