Hostname: page-component-68945f75b7-9klrw Total loading time: 0 Render date: 2024-08-06T01:21:32.290Z Has data issue: false hasContentIssue false

3D simulation of the dislocation dynamics in polycrystalline metal thin films

Published online by Cambridge University Press:  15 February 2011

B. Von Blanckenhagen
Affiliation:
University of Karlsruhe, izbs, Kaiserstr. 12, 76131 Karlsruhe, Germany
E. Arzt
Affiliation:
Max Planck Institute for Metals Research, Heisenbergstr.3, 70569 Stuttgart, Germany
P. Gumbsch
Affiliation:
University of Karlsruhe, izbs, Kaiserstr. 12, 76131 Karlsruhe, Germany Fraunhofer Institute for Mechanics of Materials, Wöhlerstr. 11, 79108 Freiburg, Germany
Get access

Abstract

The plastic deformation of polycrystalline fcc metal thin .lms with thicknesses of 1 μm and less is investigated by simulating the dynamics of discrete dislocations in a representative columnar grain. The simulations are based on the assumption that dislocation sources or multiplication sites are rare and that sources have to operate several times to generate appreciable plastic deformation. This model is thoroughly tested by calculating the response of randomly distributed dislocation sources to an applied stress and comparing the results with experimental data. Stress–strain curves, the influence of boundary conditions, dislocation densities, work hardening rates and their dependence on the film thickness as well as the dependence on grain orientation are studied. The agreement between simulation and experiment is good and many aspects of thin film plasticity can be understood with the assumption that small-scale plastic deformation is source controlled rather than mobility controlled.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Murakami, M., Thin Solid Films 59, 105 (1979).Google Scholar
[2] Venkatraman, R. and Bravman, J. C., J. Mater. Res. 7, 2040 (1992).Google Scholar
[3] Vinci, R. P., Zielinski, E. M., and Bravman, J. C., Thin Solid Films 262, 142 (1995).Google Scholar
[4] Keller, R.-M., Baker, S. P., and Arzt, E., J. Mater. Res. 13, 1307 (1998).Google Scholar
[5] Kraft, O., Hommel, M., and Arzt, E., Mater. Sci. Eng. A288, 209 (2000).Google Scholar
[6] Blanckenhagen, B. von, Gumbsch, P., and Arzt, E., Mater. Res. Soc. Symp. Proc. 673, P2.3.1 (2001).Google Scholar
[7] Blanckenhagen, B. von, Gumbsch, P., and Arzt, E., Phil. Mag. Lett. 83, 18 (2003).Google Scholar
[8] Weihnacht, V. and Brückner, W., Acta Mater. 49, 2365 (2001).Google Scholar
[9] Hommel, M. and Kraft, O., Acta Mater. 49, 3935 (2001).Google Scholar
[10] Baker, S. P., Kretschmann, A., and Arzt, E., Acta Mater. 49, 2145 (2001).Google Scholar
[11] Blanckenhagen, B. von, Gumbsch, P., and Arzt, E., Modelling Simul. Mater. Sci. Eng. 9, 157 (2001).Google Scholar
[12] Blanckenhagen, B. von, Arzt, E., and Gumbsch, P., to be published (2003).Google Scholar
[13] Embury, J. D. and Hirth, J. P., Acta Metall. Mater. 42, 2051 (1994).Google Scholar
[14] Nix, W. D., Scripta Metall. 39, 545 (1998).Google Scholar
[15] Liu, X. H., Ross, F. M., and Schwarz, K.W., Mater. Res. Soc. Symp. Proc. 673, P4.2.1 (2001).Google Scholar
[16] Foreman, A. J. E., Phil. Mag. A 15, 1011 (1967).Google Scholar
[17] Venkatraman, R., Chen, S., and Bravman, J. C., J. Vac. Sci. Technol. A 9, 2538 (1991).Google Scholar
[18] Schwarz, K. W., J. Appl. Phys. 85, 108 (1999).Google Scholar
[19] Keller, R. R., Phelps, J. M., and Read, D. T., Mater. Sci. Eng. A214, 42 (1996).Google Scholar
[20] Keller–Flaig, R.-M., Legros, M., Sigle, W., Gouldstone, A., Hemker, K. J., Suresh, S., and Arzt, E., J. Mater. Res. 14, 4673 (1999).Google Scholar
[21] Kobrinsky, M. J. and Thompson, C. V., Acta Mater. 48, 625 (2000).Google Scholar
[22] Dehm, G., Weiss, D., and Arzt, E., Mater. Sci. Eng. A 309–310, 468 (2001).Google Scholar
[23] Freund, L. B., J. Appl. Mech. 54, 553 (1987).Google Scholar
[24] Nix, W. D., Metall. Trans. A 20A, 2217 (1989).Google Scholar
[25] Schwarz, K. W. and Terso, J.., Appl. Phys. Lett. 69, 1220 (1996).Google Scholar
[26] Gomez-Garcia, D., Devincre, B., and Kubin, L., J. Comput. Aided Mater. Design 6, 157 (1999).Google Scholar
[27] Pant, P., Schwarz, K. W., and Baker, S. P., Mater. Res. Soc. Symp. Proc. 673, p2.2.1 (2001).Google Scholar
[28] Kuan, T. S. and Murakami, M., Metall. Trans. A 13A, 383 (1982).Google Scholar
[29] P. Müllner and Arzt, E., Mater. Res. Soc. Symp. Proc. 505, 149 (1998).Google Scholar
[30] Arzt, E., Dehm, G., Gumbsch, P., Kraft, O., and Weiss, D., Progr. Mats. Sci. 46, 283 (2001).Google Scholar
[31] Dehm, G. and Arzt, E., Appl. Phys. Lett. 77, 1126 (2000).Google Scholar
[32] Weiss, D., Gao, H., and Arzt, E., Acta Mater. 49, 2395 (2001).Google Scholar
[33] Hommel, M., Ph.D. thesis, “Röntgenographische Untersuchung des monotonen und zyklischen Verformungsverhaltens dünner Metallschichten auf Substraten”, Universität Stuttgart, 1999.Google Scholar
[34] Weiss, D., Ph.D. thesis, “Deformation mechanisms in pure and alloyed copper films”, Universität Stuttgart, 2000.Google Scholar
[35] Jawarani, D., Kawasaki, H., Yeo, I.-S., Rabenberg, L., Start, J. P., and Ho, P. S., J. Appl. Phys. 82, 171 (1997).Google Scholar
[36] Dehm, G., Inkson, B. J., Balk, T. J., Wagner, T., and Arzt, E., Mater. Res. Soc. Symp. Proc. 673, P2.1.1 (2001).Google Scholar