Skip to main content Accessibility help

3D Printing of NiZn ferrite/ABS Magnetic Composites for Electromagnetic Devices

  • Yunqi Wang (a1), Flynn Castles (a1) and Patrick S. Grant (a1)


3D printing is a versatile fabrication method that offers the potential to realize complex 3D devices with metamaterial characteristics in a single process directly from a computer aided design. However, the range of functional devices that might be realized by 3D printing is limited by the current range of materials that are compatible with a given 3D printing process: fused deposition modelling (FDM), which is a widely used 3D printing method, typically employs only common thermoplastics. Here we describe the development of a magnetic feedstock based on polymer-ferrite composite that is compatible with FDM. The feasibility of the technique is demonstrated by the permittivity and permeability measurement of direct printed blocks and the fabrication of a complex 3D diamond-like lattice structure. The development of printable magnetic composites provides increased design freedom for direct realization of devices with graded electromagnetic properties operating at microwave frequencies.



Hide All
1. Smith, D. R., Padilla, Willie J., Vier, D. C., Nemat-Nasser, S. C., and Schultz, S., Phys. Rev. Lett. 84, 4184 (2000).
2. Baena, J. D., Marques, R., and Medina, F., Phys. Rev. B 69, 014402 (2004).
3. Silveirinha, M. G., Belov, P. A., and Simovski, C. R., Phys. Rev. B 75, 035108 (2007).
4. Wangberg, R., Elser, J., Narimanov, E. E., and Podolskiy, V. A., J. Opt. Soc. Am. B 23, 498 (2006).
5. Pendry, J. B., Schurig, D., and Smith, D. R., Science 312, 1780 (2006).
6. Liang, M., Ng, W. R., Chang, K., Gehm, M. E., and Xin, H., Proc. IEEE Int. Microw. Symp., 1 (2011).
7. Raymond, R. C. Rumpf, C., Gesar, R. G., Tsang, H. H., Padilla, J. E., and Irwin, M. D., Prog. Electronmagn. Res. 142, 243 (2013).
8. Garcia, C. R., Correa, J., Espalin, D., Barton, J. H., Rumpf, R. C., Wicker, R., and Gonzalez, V., Prog. Electromagn. Res. 34, 75 (2012).
9. Ahmadloo, M., IEEE 22nd Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 29 (2013).
10. Jiao, X., He, H., Li, G., Qian, W., Shen, G., Pommerenke, D., Ding, C., White, D., Scearce, S., and Yang, Y., IEEE International Symposium on Electromagnetic Compatibility (EMC), 956 (2014).
11. Gardner, D. S., Crawford, A. M., and Wang, S., IEEE International Interconnect Technology Conference, June, 101 (2001).
12. Tsutaoka, T., Kasagi, T., Nakamura, T., and Hatakeyama, K., J. Phy. IV France 7, C1 (1997).
13. Wang, Y. and Grant, P. S., Appl. Phys. A. 117, 477 (2014).
14. Barry, W., IEEE Trans. Microwave Th. Tech. 34, 80 (1986).
15. Swaminathan, S., Mchenry, M. E., Calvin, S., Sorescu, M., and Diamandescu, L., Proc. of the 9th, International Conference on Ferrites, American Ceramic Society 847 (2005).
16. Karim, A., Fosse, S., and Persson, K. A., Phys. Rev. B 87, 075322 (2013).
17. Nicolson, A. M. and Ross, G. F., IEEE Trans. Instrum. Meas. 19 (4), 377 (1970).
18. Weir, W. B., Proc. IEEE 62 (1), 33 (1974).


Related content

Powered by UNSILO

3D Printing of NiZn ferrite/ABS Magnetic Composites for Electromagnetic Devices

  • Yunqi Wang (a1), Flynn Castles (a1) and Patrick S. Grant (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.