Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T22:34:06.306Z Has data issue: false hasContentIssue false

3D Micro-Tomographic imaging and Quantitative Morphometry for the Nondestructive Evaluation of Porous Biomaterials

Published online by Cambridge University Press:  10 February 2011

R. Müller
Affiliation:
Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA. Institute for Biomedicai Engineering, University of Zürich and Swiss Federal Institute of Technology (ETH), Moussonstrasse 18, 8044 Zürich, Switzerland
S. Matter
Affiliation:
Institute of Polymers, Swiss Federal Institute of Technology (ETH), ETH Zentrum, 8092 Zurich, Switzerland.
P. Neuenschwander
Affiliation:
Institute of Polymers, Swiss Federal Institute of Technology (ETH), ETH Zentrum, 8092 Zurich, Switzerland.
U. W. Suter
Affiliation:
Institute of Polymers, Swiss Federal Institute of Technology (ETH), ETH Zentrum, 8092 Zurich, Switzerland.
P. Rüegsegger
Affiliation:
Institute for Biomedicai Engineering, University of Zürich and Swiss Federal Institute of Technology (ETH), Moussonstrasse 18, 8044 Zürich, Switzerland
Get access

Abstract

Micro-computed tomography (μCT) is a new and emerging technique for the nondestructive assessment and analysis of the three-dimensional trabecular bone architecture. The applications of μCT with respect to the analysis of bone are manyfold. Nevertheless, it also holds high promise for the microstructural measurement and analysis of porous biomaterials. For the purpose of the study, a desk-top μCT providing a nominal isotropie resolution of 14 μm was used. Since the polymeric material has a very low X-ray absorption coefficient, the scaffolds were stained prior to measurement using a commercial X-ray contrast agent. This allowed not only to acquire important microstructural features of the diree-dimensional scaffold but also to compute standard structural indices such as BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp and the degree of anisotropy (DA) using mean intercept length measurements. The preliminary results show that different types of scaffolds can be distinguished both qualitatively (visualization) and quantitatively (morphometry) provided an adequate X-ray staining technique is used. It can be concluded that, in the future, μCT may be of considerable help in basic as well as in applied research and development.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Langer, R. and Vacanti, J.P., Science 260, 920 (1993).Google Scholar
[2] Beumer, G.J., van Blitterswijk, C.A., Bakker, D. and Ponec, M., Biomaterials 14, 598 (1993).Google Scholar
[3] Rivard, C.H., Chaput, C.J., DesRosiers, E.A., Yahia, L.H. and Selmani, A., J. Appl Biomat. 6, 65 (1995).Google Scholar
[4] Hirt, D., Neuenschwander, P. and Suter, U.W., Makromol. Chem. Phys. 197, 1609 (1996).Google Scholar
[5] Neuenschwander, P., Uhlschmid, G.K., Suter, U.W., Ciardelli, G., Hirt, T., Kaiser, O., Kojima, K., Lendlein, A. and Matter, S., Europ. Pat. No. 0696605.Google Scholar
[6] Saad, B., Ciardelli, G., Matter, S., Welti, M., Uhlschmid, G.K., Neuenschwander, P. and Suter, U.W., J. Biomed. Mat. Res. 30, 429 (1996).Google Scholar
[7] Saad, B. Matter, S., Ciardelli, G., Uhlschmid, G.K., Welti, M., Neuenschwander, P. and Suter, U.W., J. Biomed. Mat. Res., submitted (1996).Google Scholar
[8] Saad, B., Ciardelli, G., Matter, S., Welti, M., Uhlschmid, G.K., Neuenschwander, P. and Suter, U.W., J. Mat. Sci: Mater. in Med. 7, 56 (1996).Google Scholar
[9] Parfitt, A.M., Mathews, C.H.E., Villanueva, A.R., Kleerekoper, M., Frame, B. and Rao, D. S., Calcif. Tiss. Int. 72, 1396 (1983).Google Scholar
[10] Schenk, R.K. and Olah, A.J., in Handbuch der inneren Medizin VI/1A, Knochen Gelenke Muskeln, edited by Kuhlencordt, F. and Bartelheimer, H. (Springer, Berlin, 1980) pp. 437494.Google Scholar
[11] Feldkamp, L.A., Goldstein, S.A., Parfitt, A.M., Jesion, G. and Kleerekoper, M., J. Bone Min. Res. 4, 3 (1989).Google Scholar
[12] Kinney, J.H., Breuning, T.M., Starr, T.L., Haupt, D., Nichols, M.C., Stock, S.R., Butts, M.D. and Saroyan, R.A., Science 260, 789 (1993).Google Scholar
[13] Bonse, U., Busch, F., Günnewig, O., Beckmann, F., Pahl, R., Delling, G., Hahn, M. and Graeff, W., Bone Min. 25, 25 (1994).Google Scholar
[14] Rüegsegger, P., Koller, B. and Müller, R., Calcif. Tiss. Int. 58, 24 (1996).Google Scholar
[15] Saad, B., Matter, S., Uhlschmid, G.K., Hirt, T., Trentz, O.A., Neuenschwander, P. and Sutler, U.W., Langenbecks Archiv für Chirurgie, Forumband, 65 (1995).Google Scholar
[16] Liu, S.Q. and Kodama, M., J. Biomed. Mat. Res., 26, 1489 (1992).Google Scholar
[17] Lo, H., Kadiyala, S., Guggino, S.E. and Leong, K.W., Proc. Mat. Res. Soc. 331, 41 (1994).Google Scholar
[18] Whang, K., Thomas, C.H., Healy, K.E. and Nuber, G., Polymer 36, 837 (1995).Google Scholar
[19] Mikos, A.G., Sarakinos, G., Leite, S.M., Vacanti, J.P., Langer, R., Biomaterials 14, 323 (1993).Google Scholar
[20] Müller, R., Hildebrand, T. and Rüegsegger, P., Phys. Med. Biol. 39, 145 (1994).Google Scholar
[21] Parfitt, A.M., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., Meunier, P.J., Ott, S.M. and Recker, R.R., J. Bone Min. Res. 21, 595 (1987).Google Scholar
[22] Harrigan, T.P. and Mann, R.W., J. Mater. Sci. 19, 767 (1984).Google Scholar
[23] Goulet, R.W., Goldstein, S.A., Ciarelli, M.J., Kuhn, J.L., Brown, M.B. and Feldkamp, L.A., J. Biomech. 27, 375 (1994).Google Scholar