Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T04:33:46.128Z Has data issue: false hasContentIssue false

3C-SiC on Si: A Versatile Material for Electronic, Biomedical and Clean Energy Applications

Published online by Cambridge University Press:  10 June 2014

C.L Frewin
Affiliation:
University of South Florida, Dept. of Electrical Engineering, 4202 E. Fowler Ave., Tampa, FL 33620, USA
M. Reyes
Affiliation:
University of South Florida, Dept. of Electrical Engineering, 4202 E. Fowler Ave., Tampa, FL 33620, USA
J. Register
Affiliation:
University of South Florida, Dept. of Electrical Engineering, 4202 E. Fowler Ave., Tampa, FL 33620, USA
S. W. Thomas
Affiliation:
University of South Florida, Dept. of Electrical Engineering, 4202 E. Fowler Ave., Tampa, FL 33620, USA
S. E. Saddow
Affiliation:
University of South Florida, Dept. of Electrical Engineering, 4202 E. Fowler Ave., Tampa, FL 33620, USA
Get access

Abstract

Silicon carbide (SiC) has long been known as a robust semiconductor with superior properties to silicon for electronic applications. Consequently a tremendous amount of international activity has been on-going for over four decades to develop high-power solid state SiC electronics. While this activity has focused on the hexagonal polytypes of SiC, the only form that can be grown directly on Si substrates, 3C-SiC (or cubic SiC), has been researched for non-electronic applications such as MEMS and biosensors. In particular in our group we have pioneered several biomedical devices using 3C-SiC grown on Si substrates, and recently have been investigating the use of this novel material for clean energy applications. This paper first reviews progress made in the area of 3C-SiC electronic devices. Next a review of nearly a decade of biomedical activity is presented, with particular emphasis on the most promising applications: in vivo glucose monitoring, biomedical implants for connecting the human nervous system to advanced prosthetics, and MEMS/NEMS research aimed at allowing for in vivo diagnostic and therapeutic systems for advanced biomedical applications. Recent published work in the area of hydrogen production via electrolysis using 3C-SiC closes the paper as this last application is extremely promising for the burgeoning hydrogen economy and demonstrates a third important application of 3C-SiC on Si – its potential use in clean energy systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reyes, M., Frewin, C., Ward, P. J., and Saddow, S. E., “3C-SiC on Si Hetero-Epitaxial Growth for Electronic and Biomedical Applications,” ECS Transactions, vol. 58, pp. 119126, 2013.CrossRefGoogle Scholar
Iliescu, C., Chen, B. T., Wei, J. S., and Pang, A. J., “Characterisation of silicon carbide films deposited by plasma-enhanced chemical vapour deposition,” Thin Solid Films, vol. 516, pp. 51895193, Jun 30 2008.CrossRefGoogle Scholar
Cogan, S. F., Edell, D. J., Guzelian, A. A., Ping Liu, Y., and Edell, R., “Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating,” Journal of Biomedical Materials Research Part A, vol. 67, pp. 856–67, Dec 1 2003.CrossRefGoogle ScholarPubMed
Yakimova, R., Petoral, R. M., Yazdi, G. R., Vahlberg, C., Spetz, A. L., and Uvdal, K., “Surface functionalization and biomedical applications based on SiC,” Journal of Physics D-Applied Physics, vol. 40, pp. 64356442, Oct 21 2007.CrossRefGoogle Scholar
Round, H. J., “A note on carborundum,” Electrical World, vol. 49, p. 309, 1907.Google Scholar
Nishino, S., Powell, J. A., and Will, H. A., “Production of Large-Area Single-Crystal Wafers of Cubic Sic for Semiconductor-Devices,” Applied Physics Letters, vol. 42, pp. 460462, 1983.CrossRefGoogle Scholar
Saddow, S. E. and Agarwal, A., Advances in silicon carbide processing and applications. Boston: Artech House, 2004.Google Scholar
Spry, D. J., Trunek, A. J., and Neudeck, P. G., “High Breakdown Field P-type 3C-SiC Schottky Diodes Grown on Step-Free 4H-SiC Mesas,” Materials Science Forum, vol. 457-460, pp. 10611064, 2004.CrossRefGoogle Scholar
Neudeck, P. G., Larkin, D. J., Starr, J. E., Powell, J. A., Salupo, C. S., and Matus, L. G., “Greatly improved 3C-SiC p-n junction diodes grown by chemical vapor deposition,” Electron Device Letters, IEEE, vol. 14, pp. 136139, 1993.CrossRefGoogle Scholar
Wan, J., Capano, M. A., Melloch, M. R., and Cooper, J. A. Jr., “Inversion Channel MOSFETs in 3C-SiC on Silicon,” in IEEE Lester Eastman Conference on High Performance Devices Newark, DE, USA, 2002, pp. 8389.Google Scholar
Bakowski, M., Schöner, A., Ericsson, P., Strömberg, H., Nagasawa, H., and Abe, M., “Development of 3C-SiC MOSFETs,” Journal of Telecommunications and Information Technology, vol. 2, pp. 4956, 2007.Google Scholar
Kobayashi, M., Uchida, U., Minami, A., Sakata, T., Esteve, R., and Schöner, A., “3C-SiC MOSFET with High Channel Mobility and CVD Gate Oxide,” Material Science Forum, vol. 679-680, pp. 645648, 2011.CrossRefGoogle Scholar
Kanjilal, M. R., Ghosh, D., and Mukherjee, M., “Studies of Electrical Characteristics of MESFET Using Wbg IV-IV SiC as Potential Substrate Material,” International Journal of Science and Advanced Technology, vol.2, pp. 7176, 2012.Google Scholar
Wahab, Q., Karlsteen, M., Nur, O., Hultman, L., Willander, M., and Sundgren, J. E., “Heterojunction diodes in 3C-SiC/Si system grown by reactive magnetron sputtering: Effects of growth temperature on diode rectification and breakdown,” Journal of Electronic Materials, vol. 25, pp. 14951500, 1996.CrossRefGoogle Scholar
Parashar, P. and Chatterjee, A. K., “Analysis Of 3C-Sic Double Implanted MOSFET With Gaussian Profile Doping In The Drift Region For High Breakdown Voltage,” International Journal of Research in Engineering and Science, vol. 2, pp. 3639, 2014.Google Scholar
Caldwell, J. D., Stahlbush, R. E., Ancona, M. G., Glembocki, O. J., and Hobart, K. D., “On the driving force for recombination-induced stacking fault motion in 4H–SiC,” Journal of Applied Physics, vol. 108, p. 044503, 2010.CrossRefGoogle Scholar
Speer, K. M., Spry, D. J., Trunek, A. J., Neudeck, P. G., Crimp, M. A., Hile, J. T., Burda, C., and Pirouz, P., “Absence of Dislocation Motion in 3C-SiC pn Diodes under Forward Bias,” Material Science Forum, vol. 556-557, pp. 223226, 2007.CrossRefGoogle Scholar
Beaudoin, F., Simard-Normandin, M., and Meunier, M., “Metallic contamination from wafer handling,” in Silicon Recombination Lifetime Characterization Methods, Gupta, D. C., Bacher, F., and Hugh, W. H., Eds., ed West Conshohocken, PA, USA: American Society for Testing Materials, 1988, pp. 219225.Google Scholar
Kuhn, M. and Silversm., Dj, “Ionic Contamination and Transport of Mobile Ions in Mos Structures,” Journal of the Electrochemical Society, vol. 118, pp. 966-&, 1971.CrossRefGoogle Scholar
Osburn, C. M. and Raider, S. I., “Effect of Mobile Sodium Ions on Field Enhancement Dielectric Breakdown in Sio2 Films on Silicon,” Journal of the Electrochemical Society, vol. 120, pp. 13691376, 1973.CrossRefGoogle Scholar
Raider, S. I., Gregor, L. V., and Flitsch, R., “Transfer of Mobile Ions from Aqueous-Solutions to Silicon Dioxide Surface,” Journal of the Electrochemical Society, vol. 120, pp. 425431, 1973.CrossRefGoogle Scholar
Snow, E. H., Grove, A. S., Deal, B. E., and Sah, C. T., “Ion Transport Phenomena in Insulating Films,” Journal of Applied Physics, vol. 36, pp. 1664-&, 1965.CrossRefGoogle Scholar
Carlisle, E. M., “Silicon as an essential trace element in animal nutrition,” Ciba Found Symp, vol. 121, pp. 123–39, 1986.Google ScholarPubMed
Birshall, J. D. and Espie, A. W., “Biological Implications of the Interaction (Via Silanol Groups) of Silicon with Metal-Ions,” in Silicon Biochemistry. vol. 121, Evered, D. and O’Connor, M., Eds., ed Chichester, UK: John Wiley & Sons, 1986, pp. 140159.Google Scholar
Hench, L. L. and Wilson, J., “Biocompatibility of silicates for medical use,” in Ciba Foundation Symposium - Silicon Biochemistry. vol. 121, Evered, D. and O’Connor, M., Eds., ed Chichester, UK: John Wiley & Sons, 1986, pp. 231253.Google Scholar
O’Neil, C., Jordan, P., Bhatt, T., and Newman, R., “Silica and oesophageal cancer,” in Ciba Foundation Symposium - Silicon Biochemistry. vol. 121, Evered, D. and O’Connor, M., Eds., ed Chichester, UK: John Wiley & Sons, 1986, pp. 214230.Google Scholar
Saddow, S. E., “SiC biotechnology for advanced biomedical applications,” in Second Workshop on Advanced Cybernetics, ed. University of Sao Paulo, Sao Carlos, Brasil, 2013.Google Scholar
2009, ISO 10993-1 Biological evaluation of medical devices Part 1: Evaluation and testing Google Scholar
Saddow, S. E., Ed., Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications. Amsterdam: Elsevier, 2011.Google Scholar
Coletti, C., Jaroszeski, M. J., Pallaoro, A., Hoff, A. M., Iannotta, S., and Saddow, S. E., “Biocompatibility and wettability of crystalline SiC and Si surfaces,” Conf Proc IEEE Eng Med Biol Soc, vol. 2007, pp. 5850–3, 2007.Google ScholarPubMed
Frewin, C. L., Jaroszeski, M., Weeber, E., Muffly, K. E., Kumar, A., Peters, M., Oliveros, A., and Saddow, S. E., “Atomic force microscopy analysis of central nervous system cell morphology on silicon carbide and diamond substrates,” Journal of Molecular Recognition, vol. 22, pp. 380–8, Sep-Oct2009.CrossRefGoogle ScholarPubMed
Frewin, C. L., “The Neuron - Silicon Carbide Interface: Biocompatibility Study and BMI Device Development,” Ph.D., Electrical Engineering, The University of South Florida, 2009.Google Scholar
2009, ISO 10993-12 Biological evaluation of medical devices Part 12: Sample preparation and reference materials Google Scholar
2009, ISO 10993-5 Biological evaluation of medical devices Part 5:Tests for in vitro cytotoxicity Google Scholar
Kern, W. and Puotinen, D. A., “Cleaning Solutions Based on Hydrogen Peroxide for Use in Silicon Semiconductor Technology,” Rca Review, vol.31, pp. 187-&, 1970.Google Scholar
Reyes, M., Shishkin, Y., Harvey, S., and Saddow, S. E., “Development of a high-growth rate 3C-SiC on Si CVD process,” Mater. Res. Soc. Symp. Proc., vol. 911, pp. 7984, 2006.CrossRefGoogle Scholar
Frewin, C. L., Coletti, C., Register, J. J., Nezafati, M., Thomas, S., and Saddow, S. E., “3.6: Silicon Carbide Materials for Biomedical Applications,” in Carbon for Sensing Devices, Demarchi, D. and Tagliaferro, A., Eds., ed, 2014.Google Scholar
Beach, R. D., Conlan, R. W., Godwin, M. C., and Moussy, F., “Towards a miniature implantable in vivo telemetry monitoring system dynamically configurable as a potentiostat or galvanostat for two- and three-electrode biosensors,” Ieee Transactions on Instrumentation and Measurement, vol.54, pp. 6172, Feb 2005.CrossRefGoogle Scholar
I. Medtronic MiniMed. (2013, January 27). Guardian REAL-Time CGM System. Available: http://www.medtronicdiabetes.com/treatment-and-products/guardian-real-time-cgm-system Google Scholar
Afroz, S., “A Biocompatible SiC RF Antenna for In-vivo Sensing Applications,” Ph.D., Electrical Engineering, University of South Florida, 2013.CrossRefGoogle Scholar
Afroz, S., Thomas, S. W., Mumcu, G., and Saddow, S. E., “Implantable SiC based RF antenna biosensor for continuous glucose monitoring,” in IEEE Sensors, Baltamore, Maryland USA, 2013.Google Scholar
2009, ISO 10993-6 Biological evaluation of medical devices Part 6: Tests for local effects after implantation Google Scholar
Stensaas, S. S. and Stensaas, L. J., “Reaction of Cerebral-Cortex to Chronically Implanted Plastic Needles,” Acta Neuropathologica, vol. 35, pp. 187203, 1976.Google ScholarPubMed
Edell, D. J., Toi, V. V., McNeil, V. M., and Clark, L. D., “Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex,” IEEE Trans Biomed Eng, vol. 39, pp. 635–43, Jun 1992.CrossRefGoogle ScholarPubMed
, T. Yuen, G. H. and Agnew, W. F., “Histological-Evaluation of Polyesterimide-Insulated Gold Wires in Brain,” Biomaterials, vol. 16, pp. 951956, Aug 1995.CrossRefGoogle Scholar
Rousche, P. J. and Normann, R. A., “Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex,” Journal of Neuroscience Methods, vol. 82, pp. 115, Jul 1 1998.CrossRefGoogle ScholarPubMed
Turner, J. N., Shain, W., Szarowski, D. H., Andersen, M., Martins, S., Isaacson, M., and Craighead, H., “Cerebral astrocyte response to micromachined silicon implants,” Exp Neurol, vol. 156, pp. 3349, Mar 1999.CrossRefGoogle ScholarPubMed
Polikov, V. S., Tresco, P. A., and Reichert, W. M., “Response of brain tissue to chronically implanted neural electrodes,” Journal of Neuroscience Methods, vol. 148, p. 18, 2005/08/08 2005.CrossRefGoogle ScholarPubMed
HajjHassan, M., Chodavarapu, V., and Musallam, S., “NeuroMEMS: Neural Probe Microtechnologies,” Sensors, vol. 8, pp. 67046726, Oct 2008.CrossRefGoogle ScholarPubMed
Wise, K. D., Sodagar, A. M., Yao, Y., Gulari, M. N., Perlin, G. E., and Najafi, K., “Microelectrodes, microelectronics, and implantable neural microsystems,” Proceedings of the Ieee, vol. 96, pp. 11841202, Jul 2008.CrossRefGoogle Scholar
Winslow, B. D., Christensen, M. B., Yang, W. K., Solzbacher, F., and Tresco, P. A., “A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex,” Biomaterials, Jun 17 2010.Google ScholarPubMed
Lawrence, S. M., Larsen, J. O., Horch, K. W., Riso, R., and Sinkjaer, T., “Long-term biocompatibility of implanted polymer-based intrafascicular electrodes,” J Biomed Mater Res, vol. 63, pp. 501–6, 2002.CrossRefGoogle ScholarPubMed
Szarowski, D. H., Andersen, M. D., Retterer, S., Spence, A. J., Isaacson, M., Craighead, H. G., Turner, J. N., and Shain, W., “Brain responses to micro-machined silicon devices,” Brain Research, vol. 983, pp. 2335, Sep 5 2003.CrossRefGoogle ScholarPubMed
Biran, R., Martin, D. C., and Tresco, P. A., “Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays,” Experimental Neurology, vol. 195, pp. 115126, Sep 2005.CrossRefGoogle ScholarPubMed
Polikov, V. S., Block, M. L., Fellous, J. M., Hong, J. S., and Reichert, W. M., “In vitro model of glial scarring around neuroelectrodes chronically implanted in the CNS,” Biomaterials, vol. 27, pp. 5368–76, Nov 2006.CrossRefGoogle ScholarPubMed
Polikov, V. S., Su, E. C., Ball, M. A., Hong, J. S., and Reichert, W. M., “Control protocol for robust in vitro glial scar formation around microwires: essential roles of bFGF and serum in gliosis,” J Neurosci Methods, vol. 181, pp. 170–7, Jul 30 2009.CrossRefGoogle ScholarPubMed
Polikov, V. S., Hong, J. S., and Reichert, W. M., “Soluble factor effects on glial cell reactivity at the surface of gel-coated microwires,” J Neurosci Methods, vol. 190, pp. 180–7, Jul 15 2010.CrossRefGoogle ScholarPubMed
Frewin, C. L., Locke, C., Mariusso, L., Weeber, E. J., and Saddow, S. E., “Silicon Carbide Neural Implants: in vivo Neural Tissue Reaction,” Neural Engineering (NER), 6th International IEEE/EMBS Conference on, pp. 661664, 2013.Google Scholar
Lipman, T., “An Overview of Hydrogen Production and Storage Systems with Renewable Hydrogen Case Studies ” Clean Energy States Alliance2011.Google Scholar
Fujishima, A. and Honda, K., “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238, 37 (1972). vol. 238, pp. 3738, 1972.Google Scholar
Tachibana, Y., Vayssieres, L., and Durrant, J. R., “Artificial photosynthesis for solar water-splitting,” Nature Photonics, vol. 6, pp. 511518, 2012.CrossRefGoogle Scholar
Chen, Y. W., Prange, J. D., Dühnen, S., Park, Y., Gunji, M., Chidsey, C. E. D., and McIntyre, P. C., “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nature Materials, vol.10, pp. 539544, 2011.CrossRefGoogle ScholarPubMed
Hong, S. J., Lee, S., Janga, J. S., and Lee, J. S., “Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation,” Energy Environ. Sci., vol. 4, pp. 17811787, 2011 CrossRefGoogle Scholar
Morikawa, T., Kitazumi, K., Takahashi, N., Arai, T., and Kajino, T., “p-type conduction induced by N-doping in α-Fe2O3,” Applied Physics Letters, vol. 98, pp. -, 2011.CrossRefGoogle Scholar
Yamanaka, K.-i., Sato, S., Iwaki, M., Kajino, T., and Morikawa, T., “Photoinduced Electron Transfer from Nitrogen-Doped Tantalum Oxide to Adsorbed Ruthenium Complex,” The Journal of Physical Chemistry C, vol.115, pp. 1834818353, 2011/09/22 2011.CrossRefGoogle Scholar
Park, J. H., Kim, S., and Bard, A. J., “Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting,” Nano Letters, vol. 6, pp. 2428, 2006/01/01 2005.CrossRefGoogle ScholarPubMed
Hoang, S., Guo, S., Hahn, N. T., Bard, A. J., and Mullins, C. B., “Visible Light Driven Photoelectrochemical Water Oxidation on Nitrogen-Modified TiO2 Nanowires,” Nano Letters, vol. 12, pp. 2632, 2012/01/11 2011.CrossRefGoogle ScholarPubMed
Luo, W., Yang, Z., Li, Z., Zhang, J., Liu, J., Zhao, Z., Wang, Z., Yan, S., Yu, T., and Zou, Z., “Solar hydrogen generation from seawater with a modified BiVO4 photoanode,” Energy & Environmental Science, vol. 4, pp. 40464051, 2011.CrossRefGoogle Scholar
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science, vol.293, pp. 269-271, July 13, 2001 2001.CrossRefGoogle Scholar
Alexander, B. D., Kulesza, P. J., Rutkowska, I., Solarska, R., and Augustynski, J., “Metal oxide photoanodes for solar hydrogen production,” Journal of Materials Chemistry, vol. 18, pp. 22982303, 2008.CrossRefGoogle Scholar
Ma, Q.-B., Kaiser, B., Ziegler, J., Fertig, D., and Jaegermann, W., “XPS characterization and photoelectrochemical behaviour of p-type 3C-SiC films on p-Si substrates for solar water splitting,” Journal of Physics D: Applied Physics, vol. 45, p. 325101, 2012.CrossRefGoogle Scholar
Yasuda, T., Kato, M., Ichimura, M., and Hatayama, T., “SiC photoelectrodes for a self-driven water-splitting cell,” Applied Physics Letters, vol. 101, pp. -, 2012.CrossRefGoogle Scholar
Tae Song, J., Mashiko, H., Kamiya, M., Nakamine, Y., Ohtomo, A., Iwasaki, T., and Hatano, M., “Improved visible light driven photoelectrochemical properties of 3C-SiC semiconductor with Pt nanoparticles for hydrogen generation,” Applied Physics Letters, vol. 103, pp. 213901–1-4, 2013.CrossRefGoogle Scholar
Shor, J. S. and Kurtz, A. D., “Photoelectrochemical Etching of 6 H -SiC,” J. Electrochem. Soc, vol. 141, pp. 778781, 1994.CrossRefGoogle Scholar
Song, J. T., Iwasaki, T., and Hatano, M., “Pt co-catalyst effect on photoelectrochemical properties of 3C-SiC photo-anode,” Japanese Journal of Applied Physics, vol. 53, pp. 05FZ041-4, 2014.CrossRefGoogle Scholar
Hehrlein, C., “Stent Passivation with Silicon Carbide as a Possible Alternative to Drug-eluting Stents - A Comprehensive Review of Pre-clinical and Clinical Results,” Interventional Cardiology Review, vol. 4, pp. 6063, 2009.CrossRefGoogle Scholar
Kalnins, U., Erglis, A., Dinne, I., Kumsars, I., and Jegere, S., “Clinical outcomes of silicon carbide coated stents in patients with coronary artery disease,” Med Sci Monit, vol. 8, pp. PI1620, Feb 2002.Google ScholarPubMed