Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-20T01:40:40.212Z Has data issue: false hasContentIssue false

29Si NMR and XPS Investigation of the Structure of Silicon Oxycarbide Glasses Derived from Polysiloxane Precursors

Published online by Cambridge University Press:  21 February 2011

R.J.P. Corriu
Affiliation:
Précurseurs Organométalliques de Matériaux, UMR 44, Université Montpellier II, case 007, Place E. Bataillon. F-34095 Montpellier cedex 5, France
D. Leclercq
Affiliation:
Précurseurs Organométalliques de Matériaux, UMR 44, Université Montpellier II, case 007, Place E. Bataillon. F-34095 Montpellier cedex 5, France
P.H. Mutin
Affiliation:
Précurseurs Organométalliques de Matériaux, UMR 44, Université Montpellier II, case 007, Place E. Bataillon. F-34095 Montpellier cedex 5, France
A. Vioux
Affiliation:
Précurseurs Organométalliques de Matériaux, UMR 44, Université Montpellier II, case 007, Place E. Bataillon. F-34095 Montpellier cedex 5, France
Get access

Abstract

Two silicon oxycarbide glasses with different compositions (O/Si ratio 1.2 and 1.8) were prepared by pyrolysis at moderate temperature (900 °C) of polysiloxane precursors. Their structure was investigated using quantitative 29Si solid-state NMR and X-ray photoelectron spectroscopy (XPS). The environment of the silicon atoms in the oxycarbide phase corresponded to a purely random distribution of Si-O and Si-C bonds depending on the O/Si ratio of the glass only and not on the structure of the precursors. At the light of the NMR results, the Si2p XPS spectra of the glasses may be interpreted using the contribution of the five possible SiOxC4-x tetrahedra. The Cls spectra of these glasses indicated the presence of oxycarbide carbon in CSi4 tetrahedra, similar to carbide carbon, and graphitic-like excess carbon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lipowitz, J., Freeman, H.A., Chen, R.T., Prack, E.R., Adv. Ceram. Mat. 2, 121 (1987) .Google Scholar
2 Zhang, H., Pantano, C.G., J. Am. Ceram. Soc. 73, 958 (1990).Google Scholar
3 Belot, V., Corriu, R.J.P., Leclercq, D., Mutin, P.H. and Vioux, A., J. Non Cryst. Solids, 144, 287 (1992).Google Scholar
4 idem, ibid. 147&148, 52 (1992).Google Scholar
5 Taylor, R.B., Zank, G.A., Polym. Prepr., 32, 586 (1991).Google Scholar
6 Babonneau, F., Soraru, G.D., D'Andréa, G., Dire, S., Bois, L., in Better Ceramics through Chemistry V, edited by Hampden-Smith, M.J., Klemperer, W.G. and Brinker, C.J. (Mater.Res.Soc. Proc. 271, Pittsburgh, PA, 1992) p. 789; H. Zhang, C.G. Pantano, ibid.. p. 795; idem, ibid.p.783.Google Scholar
7 Renlund, G.M., Prochazka, S., Doremus, , R.H.J. Mater. Res. 6, 2716 (1991); 6, 2723 (1991).Google Scholar
8 Porte, L. and Sartre, A., J. Mater. Sci. 24, 271 (1989); P. Schreck, C. Vix-Guterl, P. Ehrburger, J. Lahaye, ibid., 27, 4243 (1992).Google Scholar
9 Lipowitz, J. and Turner, G.L. in Solid State NMR of Polymers, edited by Mathias, L. (Plenum Press, New York, 1991) p. 305.Google Scholar
10 Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F. and Muilenberg, G.E. in Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie, Minnesota, 1979).Google Scholar
11 Pampuch, R., Ptak, W.S., Jonas, S., Stoch, J., Mater. Sci. Monog. 6, 435 (1980).Google Scholar
12 Hollinger, G. and Himpsel, F.J., Appl. Phys. Lett., 44, 93 (1983).Google Scholar
13 Corriu, R.J.P., Leclercq, D., Mutin, P.H. and Vioux, A., Chem. Mater., 4, 711 (1992);Google Scholar
14 Corriu, R.J.P., Leclercq, D., Mutin, P.H. and Vioux, A., submitted to J. Mater. Sci.Google Scholar
15 Belot, V., Corriu, R.J.P., Leclercq, D., Mutin, P.H., Vioux, A., J. Mat. Sci. Letters, 9, 1052 (1990); J. Polym. Sci., Polym. Chem. Ed., 30, 613 (1992).Google Scholar