Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-29T22:51:30.294Z Has data issue: false hasContentIssue false

1/f Noise and Thermal Equilibration Effects in Hot Wire Deposited Amorphous Silicon

Published online by Cambridge University Press:  10 February 2011

G. M. Khera
Affiliation:
University of Minnesota, School of Physics and Astronomy, Minneapolis, MN 55455 USA
J. Kakalios
Affiliation:
University of Minnesota, School of Physics and Astronomy, Minneapolis, MN 55455 USA
Q. Wang
Affiliation:
NREL, Golden, CO 80309 USA
E. Iwaniczko
Affiliation:
NREL, Golden, CO 80309 USA
Get access

Abstract

Measurements of the conductance fluctuations and thermal equilibration of the dark conductivity of a series of undoped hydrogenated amorphous silicon thin films synthesized by Hot-Wire Chemical Vapor Deposition (HWCVD), with hydrogen contents varying from less than one to twelve atomic percent are reported. The spectral density of the conductance fluctuations varies inversely with frequency f and is dependent upon hydrogen concentration; the 1/f noise statistics are non- Gaussian, indicating correlated fluctuators as is observed in PECVD a-Si:H. These results indicate that aspects of electronic transport and defect dynamics in HWCVD films are similar to those in PECVD a-Si:H films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mahan, A. H. and Vanecek, M., in Amorphous Silicon Materials and Solar Cells, edited by Stafford, B. L. (AIP Conference Proceedings 234, New York, NY, 1991) pp. 195202.Google Scholar
2. Mahan, A. H., Carapella, J., Nelson, B. P., Crandall, R. S., and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
3. Crandall, R. S., Mahan, A. H., Nelson, B., Vanecek, M., Balberg, I., in Photovoltaic Advanced Research and Development Project, edited by Noufi, R. (AIP Conference Proceedings 268, New York, NY, 1992) pp. 8187.Google Scholar
4. Brogueira, P., Chu, V., and Conde, J. P., in Amorphous Silicon Technology - 1994, edited by Schiff, E. A., Hack, M., Madan, A., Powell, M., and Matsuda, A. (Mat. Res. Soc. Proc. 336, Pittsburgh, PA, 1994) pp. 6772.Google Scholar
5. Restle, P. J., Weissman, M. B., Black, R. D., J. Appl. Phys. 54, 5844 (1983).Google Scholar
6. Khera, G. M. and Kakalios, J., in Amorphous Silicon Technology - 1994, edited by Schiff, E. A., Hack, M., Madan, A., Powell, M., and Matsuda, A. (Mat. Res. Soc. Proc. 336, Pittsburgh, PA, 1994) pp. 395401.Google Scholar
7. Parman, C. E., Israeloff, N. E., and Kakalios, J., Phys. Rev. B 47, 12578 (1993).Google Scholar
8. Lust, L. M. and Kakalios, J., Phys. Rev. Lett. 75, 2192 (1995).Google Scholar
9. Khera, G. M., Dyalsingh, H. M., Quicker, D., and Kakalios, J., submitted to Phys. Rev. B; H. M. Dyalsingh, G. M. Khera, and J. Kakalios, in Amorphous Silicon Technology - 1994, edited by Schiff, E. A., Hack, M., Madan, A., Powell, M., and Matsuda, A. (Mat. Res. Soc. Proc. 336, Pittsburgh, PA, 1994) pp. 631636.Google Scholar
10. Vanecek, M. and Mahan, A. H., J. Non-Cryst. Solids 190, 163 (1995).Google Scholar
11. Xu, X., Isomura, M., Yoon, J. H., and Wagner, S., in Amorphous Silicon Technology - 1991, edited by Madan, A., Hamakawa, Y., Thompson, M. J., Taylor, P. C., and LeComber, P. G. (Mat. Res. Soc. Proc. 219, Pittsburgh, PA 1991) pp. 6974.Google Scholar
12. Street, R. A., Kakalios, J., Tsai, C. C., and Hayes, T. M., Phys. Rev. B, 35, 1316 (1987).Google Scholar
13. Branz, H. and Iwaniczco, E., Phys. Rev. B, 48, 17114 (1993).Google Scholar
14. Meaudre, R., Jensen, P., and Meaudre, M., Phys. Rev. B 38, 12449 (1988).Google Scholar