Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-24T03:11:36.925Z Has data issue: false hasContentIssue false

1.6 μm Emission from InAs Quantum Dots grown on a GaAs Substrate using an AlGaAsSb Metamorphic Buffer

Published online by Cambridge University Press:  11 February 2011

G. Balakrishnan
Affiliation:
Center For High Technology Materials, University Of New Mexico, Albuquerque, NM
S. Birudavolu
Affiliation:
Center For High Technology Materials, University Of New Mexico, Albuquerque, NM
L. R. Dawson
Affiliation:
Center For High Technology Materials, University Of New Mexico, Albuquerque, NM
D. L. Huffaker
Affiliation:
Center For High Technology Materials, University Of New Mexico, Albuquerque, NM
Huifang Xu
Affiliation:
TEM Laboratory, Dept. of Earth and planetary sciences, University of New Mexico, Albuquerque, NM
Yingbing Jiang
Affiliation:
TEM Laboratory, Dept. of Earth and planetary sciences, University of New Mexico, Albuquerque, NM
Get access

Abstract

We report 1.6 μm emission from InAs QDs (QDs) grown on a GaAs substrate. The ensemble is grown on a graded digital alloy (DA), which increases the matrix lattice constant from 5.65 Å to 5.77 Å. The reduced lattice mismatch between the InAs and matrix material produces larger QDs and thereby allows longer wavelength emission compared to standard growth techniques. The resulting QD density ranges from 2×1010 to 8×1010/cm2 with QD dimensions of 5nm x 30nm measured using atomic force microscopy (AFM). According to x-ray diffraction (XRD) data and transmission electron microscopy (TEM), the metamorphic buffer is unstrained with low defect density.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Park, G., Shchekin, O.B., Huffaker, D.L., and Deppe, D.G., IEEE Phot. Tech. Lett. 12 230, (2000).Google Scholar
Stintz, A., Liu, G.T., Li, H., Lester, L.F., Malloy, K.J., IEEE Phot. Tech. Lett. 12, 591 (2000).Google Scholar
3. Liu, G.T., Stintz, A., Li, H., Malloy, K.J., Lester, L.F., Electron. Lett. 35, 1163 (1999).Google Scholar
4. Shchekin, O.B. and Deppe, D.G., Appl. Phys. Lett. 80, 18 (2002).Google Scholar
5. Ghosh, S., Pradhan, S., Bhattacharya, P., Appl. Phys. Lett. 81, 3055 (2002).Google Scholar
6. Tatebayashi, J., Nishioka, M., Arakawa, Y., Appl. Phys. Lett. 78, 3469 (2001).Google Scholar
7. Ustinov, V. M., Maleev, N. A., Zhukov, A. E., Kovsh, A. R., Egorov, A. Yu., Lunev, A. V., Volovik, B. V., Krestnikov, I. L., Musikhin, Yu. G., Bert, N. A., Kop'ev, P. S., and Alferov, Zh. I., Ledentsov, N. N., and Bimberg, D., Appl. Phys. Lett. 74, 2815 (1999).Google Scholar
8. Eaglesham, D.J. and Cerullo, M., Phys. Rev. Lett. 64,1943, 1990.Google Scholar
9. Snyde, C.W., Mansfield, J.F., and Orr, B.G., Phys. Rev. B 46, 9551 (1992).Google Scholar
10. Inoue, K., Harmand, J. C., and Matsuno, T., Journ. Crys. Growth, 111, 313 (1991).Google Scholar
11. Hwang, K.C., Chao, P.C., Creamer, C., Nichols, K.B., Wang, S., Tu, D., Kong, W., Dugas, D., and Patton, G., IEEE Electron. Device Lett., 20, 551 (1999).Google Scholar
12. Chertouk, M., Heiss, H., Xu, D., Krauss, S., Klein, W., Bohm, G., Trankle, G., and Weimann, G., IEEE Electron Device Lett., 17, 273 (1996).Google Scholar
13. Cordier, Y., Druelle, Y., Bollaert, S., Cappy, A., Strudel, , diPersio, J. and Ferré, D., Appl. www.mrs.orgSurf. Sci., 123/124 (1998).Google Scholar