Skip to main content Accessibility help
×
Home

Understanding the structure and structural degradation mechanisms in high-voltage, lithium-manganese–rich lithium-ion battery cathode oxides: A review of materials diagnostics

  • Debasish Mohanty (a1), Jianlin Li (a1), Shrikant C. Nagpure (a1), David L. Wood (a2) and Claus Daniel (a2)...

Abstract

Materials diagnostic techniques are the principal tools used in the development of low-cost, high-performance electrodes for next-generation lithium-based energy storage technologies. This review highlights the importance of materials diagnostic techniques in unraveling the structure and the structural degradation mechanisms in high-voltage, high-capacity oxides that have the potential to be implemented in high-energy-density lithium-ion batteries for transportation that can use renewable energy and is less-polluting than today.

The rise in CO2 concentration in the earth’s atmosphere due to the use of petroleum products in vehicles and the dramatic increase in the cost of gasoline demand the replacement of current internal combustion engines in our vehicles with environmentally friendly, carbon free systems. Therefore, vehicles powered fully/partially by electricity are being introduced into today’s transportation fleet. As power requirements in all-electric vehicles become more demanding, lithium-ion battery (LiB) technology is now the potential candidate to provide higher energy density. Discovery of layered high-voltage lithium-manganese–rich (HV-LMR) oxides has provided a new direction toward developing high-energy-density LiBs because of their ability to deliver high capacity (∼250 mA h/g) and to be operated at high operating voltage (∼4.7 V). Unfortunately, practical use of HV-LMR electrodes is not viable because of structural changes in the host oxide during operation that can lead to fundamental and practical issues. This article provides the current understanding on the structure and structural degradation pathways in HV-LMR oxides, and manifests the importance of different materials diagnostic tools to unraveling the key mechanism(s). The fundamental insights reported, might become the tools to manipulate the chemical and/or structural aspects of HV-LMR oxides for low cost, high-energy-density LiB applications.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Understanding the structure and structural degradation mechanisms in high-voltage, lithium-manganese–rich lithium-ion battery cathode oxides: A review of materials diagnostics
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Understanding the structure and structural degradation mechanisms in high-voltage, lithium-manganese–rich lithium-ion battery cathode oxides: A review of materials diagnostics
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Understanding the structure and structural degradation mechanisms in high-voltage, lithium-manganese–rich lithium-ion battery cathode oxides: A review of materials diagnostics
      Available formats
      ×

Copyright

Corresponding author

a) Address all correspondence to Debasish Mohanty at mohantyd@ornl.gov

Footnotes

Hide All
*

Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Footnotes

References

Hide All
1. Lawrence Livermore National Library: Energy Flow Charts (2014). Available at: https://flowcharts.llnl.gov/ (accessed October 2015).
2. US Energy Information Administration: (2015). Available at: http://www.eia.gov/ (accessed October 2015).
3. Young, T.: A Course of Lectures on Natural Philosophy and the Mechanical Arts (Taylor and Walton, London, 1807).
4. Lewis, N.S.: Powering the Planet. Eng. Sci. 2, 13 (2007).
5. Lewis, N.S.: Powering the Planet. MRS Bull. 32, 808 (2007).
6. Baskin, N.: Better Place Unrealized Dream (2013). Available at: https://www.weizmann.ac.il/AERI/sites/AERI/files/electric_car.pptx (accessed October 2015).
7. Chu, S. and Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294 (2012).
8. Zhang, S.S.: Status, opportunities, and challenges of electrochemical energy storage. Front. Energy Res. 1, 1 (2013).
9. Danielson, D.T.: Everywhere Grand Challenge Blue Print (US Department of Energy, 2013). Available at: http://www1.eere.energy.gov/vehiclesandfuels/electric_vehicles/pdfs/eveverywhere_blueprint.pdf (accessed October 2015).
10. Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).
11. Howell, D.: EV Everywhere Grand Challenge-Battery Obstacles and Opportunities (US Department of Energy, Washington DC, 2012).
13. Mohanty, D., Li, J., Born, R., Maxey, L.C., Dinwiddie, R.B., Daniel, C. III, and Wood, D.L.: Non-destructive evaluation of slot-die-coated lithium secondary battery electrodes by in-line laser caliper and IR thermography methods. Anal. Methods 6, 674 (2014).
14. Wood, D.L. III, Li, J., and Daniel, C.: Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources 275, 234 (2015).
15. Li, J., Daniel, C., and Wood, D.: Materials processing for lithium-ion batteries. J. Power Sources 196(5), 2452 (2011).
16. Tarascon, J-M. and Armand, M.: Building better batteries. Nature 451, 652 (2008).
17. Oak Ridge National Laboratory: Battery Fatigue (2013). Available at: https://www.youtube.com/watch?v=e7ZpvyJhMHM&feature=youtu.be (accessed October 2015).
18. Daniel, C., Mohanty, D., Li, J. III, and Wood, D.L.: Cathode materials review. In AIP Conference Proceedings. 1597, Vol. 26, Freiberg, Germany, 2014; p. 26.
19. Kraytsberg, A. and Eli, Y.E.: Higher, stronger, better... A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater. 2, 922 (2012).
20. Whittingham, M.S.: Electrical energy storage and intercalation chemistry. Science 192, 1126 (1976).
21. Manthiram, A. and Muraliganth, T.: Lithium intercalation cathode materials for lithium-ion batteries. In Handbook of Battery Materials, 2nd ed., Daniel, C. and Besenhard, J.O. eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011.
22. Mizushima, K., Jones, P.C., Wiesman, P.J., and Goodenough, J.B.: LixCoO2 (0<x<−1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783 (1980).
23. Goodenough, J.B., Mizushima, K., and Takeda, T.: J. Appl. Phys. 19, 305 (1983).
24. National Academy of Engineering: Draper Prize Winners: Dr. Rachid Yazami (2014). Available at: http://www.nae.edu/Projects/Awards/DraperPrize/DraperWinners/105792/105813.aspx (accessed October 2015).
25. Julien, C.M., Mauger, A., Zaghi, K., and Groult, H.: Comparative issues of cathode materials for Li-ion batteries. Inorganics 2, 132 (2014).
26. Mohanty, D., Huq, A., Andrew Payzant, E., Sefat, A.S., Li, J., Abraham, D.P., Wood, D.L. III, and Daniel, C.: Neutron diffraction and magnetic susceptibility studies on a high-voltage Li1.2Mn0.55Ni0.15Co0.10O2 lithium ion battery cathode: Insight into the crystal structure. Chem. Mater. 25, 40644070 (2013).
27. Manthiram, A.: Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2, 176 (2011).
28. Huang, B., Jang, Y-I., Chiang, Y-M., and Sadoway, D.R.: Electrochemical evaluation of LiCoO2 synthesized by decomposition and intercalation of hydroxides for lithium-ion battery applications. J. Appl. Electrochem. 28, 1365 (1998).
29. Wang, L-F., Ou, C-C., Striebel, K.A., and Chenc, J-S.: Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 Cells. J. Electrochem. Soc. 150, A905 (2003).
30. Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).
31. Yu, H., Shikawa, R., So, Y-G., Shibata, N., Kudo, T., Zhou, H., and Ikuhara, Y.: Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angew. Chem., Int. Ed. 52, 5969.
32. Lu, Z.H., MacNeil, D.D., and Dahn, J.R.: Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)] O2 for lithium-ion batteries. Electrochem. Solid-State Lett. 4, A191 (2001).
33. Thackeray, M.M., Johnson, C.S., Vaughey, J.T., Li, N., and Hackney, S.A.: Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257 (2005).
34. Sathiya, M., Rousse, G., Ramesha, K., Laisa, C.P., Vezin, H., Sougrati, M.T., Doublet, M-L., Foix, D., Gonbeau, D., Walker, W., Prakash, A.S., Ben Hassine, M., Dupont, L., and Tarascon, J-M.: Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827 (2013).
35. Xu, B., Qian, D., Wang, Z., and Meng, Y.S.: Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng., R 73, 51 (2012).
36. Ohzuku, T., Ueda, A., and Nagayama, M.: Electrochemistry and structural chemistry of LiNiO2 $R\bar 3m$ for 4 volt secondary lithium cells. J. Electrochem. Soc. 140, 1862 (1993).
37. Besenhard, O.J.: Handbook of Battery Materials (Wiley-VCH, New York, 1999).
38. Hirano, A., Kanno, R., Kawamoto, Y., Yamaura, T.Y.K., Takano, M., Ohyama, K., Ohashi, M., and Yamaguchi, Y.: Relationship between non-stoichiometry and physical properties in LiNiO2 . Solid State Ionics 78, 123 (1995).
39. Ohzuku, T. and Msakimura, Y.: Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem. Lett. 30, 744 (2001).
40. Yabuuchi, N., Kumar, S., Li, H.H., Kim, Y.T., and Shao-Horn, Y.: Changes in the crystal structure and electrochemical properties of Li x Ni0.5Mn0.5O2 during electrochemical cycling to high voltages. J. Electrochem. Soc. 154, A566 (2007).
41. Ohzuku, T. and Makimura, Y.: Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett. 30, 642 (2001).
42. Kang, K., Shirley Meng, Y., Bréger, J., Grey, C.P., and Ceder, G.: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977 (2006).
43. Nazri, G.A. and Pistoia, G. eds.: Lithium Batteries Science and Technology (Springer, New York, USA, 2009).
44. Johnson, C.S., Li, N., Lefief, C., Vaughey, J.T., and Thackeray, M.M.: Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem. Mater. 20, 6095 (2008).
45. McCalla, E., Lowartz, C.M., Brown, C.R., and Dahn, J.R.: Formation of layered–layered composites in the Li–Co–Mn oxide pseudoternary system during slow cooling. Chem. Mater. 25, 912 (2013).
46. Jiang, M., Key, B., Meng, Y.S., and Grey, C.P.: Electrochemical and structural study of the layered, “Li-excess” lithium-ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2 . Chem. Mater. 21, 2733 (2009).
47. Meng, Y.S., Ceder, G., Grey, C.P., Yoon, W-S., Jiang, M., Bréger, J., and Shao-Horn, Y.: Cation ordering in layered O3 Li[NixLi1/3−2x/3Mn2/3−x/3]O2 (0 ≤ x ≤ 1/2) compounds. Chem. Mater. 17, 2386 (2005).
48. Lu, W., Wu, Q., and Dees, D.: Electrochemical characterization of lithium and manganese rich composite material for lithium ion batteries. J. Electrochem. Soc. 160, A950 (2013).
49. Gallagher, K.G., Croy, J.R., Balasubramanian, M., Bettge, M., Abraham, D.P., Burrell, A.K., and Thackeray, M.M.: Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes. Electrochem. Commun. 33, 96 (2013).
50. Bettge, M., Li, Y., Gallagher, K., Zhu, Y., Wua, Q., Lu, W., Bloom, I., and Abraham, D.P.: Voltage fade of layered oxides: Its measurement and impact on energy density. J. Electrochem. Soc. 160, A2046 (2014).
51. Deng, Z.D. and Manthiram, A.: Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. J. Phys. Chem. 115, 7097 (2011).
52. Mohanty, D., Sefat, A.S., Kalnaus, S., Li, J., Meisner, R.A., Abraham, D.P., Payzant, E.A., Wood, D.L. III, and Daniel, C.: Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J. Mater. Chem. A 1, 6249 (2013).
53. Armstrong, A.R., Holzapfel, M., Novak, P., Johnson, C.S., Kang, S.H., Thackeray, M.M., and Bruce, P.G.: Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 . J. Am. Chem. Soc. 128, 8694 (2006).
54. Yu, H. and Zhou, H.: High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 4, 1268 (2013).
55. Li, L., Seng Lee, K., and Lu, L.: Li-rich layer-structured cathode materials for high energy Li-ion batteries. Funct. Mater. Lett. 7, 1430002 (2014).
56. Croy, J.R., Abouimrane, A., and Zhang, Z.: Next-generation lithium-ion batteries: The promise of near-term advancements. Mater. Res. Bull. 39, 407 (2014).
57. He, P., Yu, H., Li, D., and Zhou, H.: Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J. Mater. Chem. A 22, 3680 (2012).
58. Hu, M., Pang, X., and Zhou, Z.: Recent progress in high-voltage lithium ion batteries. J. Power Sources 237, 229 (2013).
59. Zolotoyabko, E.: Basic Concepts of X-Ray Diffraction (Wiley-VCH, Germany, 2014). ISBN: 978-3-527-33561-9.
60. Shioya, T.: R&D Report, “SUMITOMO KAGAKU”, Vol. 2011, 1 (2011).
61. Whitfield, P.S., Davidson, I.J., Stephens, P.W., Cranswick, L.M.D., and Swainson, I.P.: Untangling cation ordering in complex lithium battery cathode materials—Simultaneous refinement of x-ray, neutron and resonant scattering data. Z. Kristallogr. Suppl. 26, 483 (2007).
62. Bennigton, S.M.: The use of neutron scattering in the study of ceramics. J. Mater. Sci. 39, 6757 (2004).
63. Williams, D.V. and Carter, C.B.: Transmission Electron Microscopy (Springer, New York, 1996).
64. Gracia, B., Farcy, J., and Pereira-Ramos, J.P.: Electrochemical properties of low temperature crystallized LiCoO2 . J. Electrochem. Soc. 144, 1179 (1997).
65. Gummow, R.J., Thackeray, M.M., David, W.I.F., and Hull, S.: Structure and electrochemistry of lithium cobalt oxide synthesised at 400°C. Mater. Res. Bull. 27, 327 (1992).
66. Rossen, E., Reimers, J.N., and Dahn, J.R.: Synthesis and electrochemistry of spinel LT-LiCoO2 . Solid State Ionics 62, 53 (1993).
67. Koga, H., Croguennec, L., Mannessiez, P., Menetrier, M., Weill, F., Bourgeois, L., Duttine, M., Suard, E., and Delmas, C.: Li1.20Mn0.54Co0.13Ni0.13O2 with different particle sizes as attractive positive electrode materials for lithium-ion batteries: Insights into their structure. J. Phys. Chem. 116, 13497 (2012).
68. Jarvis, K.A., Deng, Z., Allard, L.F., Manthiram, A., and Ferreira, P.J.: Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution. Chem. Mater. 23, 3614 (2011).
69. Amalraj, F., Kovacheva, D., Talianker, M., Zeiri, L., Grinblat, J., Leifer, N., Goobes, G., Markovsky, B., and Aurbach, D.: Synthesis of integrated cathode materials xLi2MnO3 (1 − x)LiMn1/3Ni1/3Co1/3O2 (x=0.3, 0.5, 0.7) and studies of their electrochemical behavior. J. Electrochem. Soc. 157, A1121 (2010).
70. Bregera, J., Jianga, M., Dupre, N., Meng, Y.S., Horn, Y.S., Cederc, G., and Grey, C.P.: High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution. J. Solid State Chem. 178, 2578 (2005).
71. Ohzuku, T., Nagayama, M., Tsuji, K., and Ariyoshi, K.: High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: Toward rechargeable capacity more than 300 mA h g−1 . J. Mater. Chem. A 21, 10179 (2011).
72. Wen, J.G., Bareno, J., Lei, C.H., Kang, S.H., Balasubramanian, M., Petrov, I., and Abraham, D.P.: Analytical electron microscopy of Li1.2Co0.4Mn0.4O2 for lithium-ion batteries. Solid State Ionics 182, 98 (2011).
73. Bareño, J., Balasubramanian, M., Kang, S.H., Wen, J.G., Lei, C.H., Pol, S.V., Petrov, I., and Abraham, D.P.: Long-range and local structure in the layered oxide Li1.2Co0.4Mn0.4O2 . Chem. Mater. 23, 2039 (2011).
74. Mohanty, D., Kalnaus, S., Meisner, R.A., Rhodes, K.J., Li, J., Payzant, E.A., Wood, D.L. III, and Daniel, C.: Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J. Power Sources 229, 239 (2013).
75. Whitfield, P.S., Davidson, I.J., Cranswick, L.M.D., Swainson, I.P., and Stephens, P.W.: Investigation of possible superstructure and cation disorder in the lithium battery cathode material LiMn1/3Ni1/3Co1/3O2 using neutron and anomalous dispersion powder diffraction. Solid State Ionics 176, 463 (2005).
76. Liu, H., Fell, C.R., An, K., Cai, L., and Meng, Y.S.: In-situ neutron diffraction study of the xLi2MnO3·(1 − x)LiMO2 (x = 0, 0.5; M = Ni, Mn, Co) layered oxide compounds during electrochemical cycling. J. Power Sources 240, 772 (2013).
77. Mohanty, D., Sefat, A.S., Li, J., Meisner, R.A., Rondinone, A.J., Payzant, E.A., Abraham, D.P., Wood, D.L. III, and Daniel, C.: Correlating cation ordering and voltage fade in a lithium–manganese-rich lithium-ion battery cathode oxide: A joint magnetic susceptibility and TEM study. Phys. Chem. Chem. Phys. 15, 19496 (2013).
78 Yu, S.H., Yoon, T., Mun, J., Park, S., Kang, Y.S., Park, J.H., Oh, S.M., and Sung, Y.E.: Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2 cathode material for lithium ion batteries. J. Mater. Chem. A 1, 2833 (2013).
79. Koga, H., Croguennec, L., Menetrier, M., Douhil, K., Belin, S., Bourgeois, L., Suard, E., and Weill, F.: Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2 . J. Electrochem. Soc. 160, A786 (2013).
80. Li, Y., Bettge, M., Polzin, B., Zhu, Y., Balasubramanian, M., and Abraham, D.P.: Understanding long-term cycling performance of Li1.2Ni0.15Mn0.55Co0.1O2–graphite lithium-ion cells. J. Electrochem. Soc. 160, A3006 (2013).
81. Ito, A., Shoda, K., Sato, Y., Hatano, M., Horie, H., and Ohsawa, Y.: Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 upon the first charge and discharge. J. Power Sources 196, 4785 (2011).
82. Mohanty, D., Li, J., Abraham, D.P., Huq, A., Andrew Payzant, E., Wood, D.L. III, and Daniel, C.: Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: Origin of the tetrahedral cations for spinel conversion. Chem. Mater. 26, 6272 (2014).
83. Heimendahl, M.V.: Electron Microscopy of Materials (Academic press, New York, 1980).
84. Amalraj, F., Talianker, M., Markovsky, B., Sharon, D., Burlaka, L., Shafir, G., Zinigrad, E., Haik, O., Aurbach, D., Lampert, J., Schulz-Dobrick, M., and Garsuchc, A.: Study of the lithium-rich integrated compound xLi2MnO3·(1 − x)LiMO2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells. J. Electrochem. Soc. 160, A324 (2013).
85. Soo Kim, J., Johnson, C.S., Vaughey, J.T., Thackeray, M.M., Hackney, S.A., Yoon, W., and Grey, C.P.: Electrochemical and structural properties of xLi2M‘O3·(1 − x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M‘ = Ti, Mn, Zr; 0 ≤ x≤ 0.3). Chem. Mater. 16, 1996 (2004).
86. Gu, M., Genc, A., Belharouak, I., Wang, D., Amine, K., Thevuthasan, S., Baer, D.R., Zhang, J-G., Browning, N.D., Liu, J., and Wang, C.: Nanoscale phase separation, cation ordering, and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2 for Li-ion batteries. Chem. Mater. 25, 2319 (2013).
87. Song, B., Liu, Z., On Lai, M., and Lu, L.: Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material. Phys. Chem. Chem. Phys. 14, 12875 (2012).
88. Gu, M., Belharouak, I., Zheng, J., Wu, H., Xiao, J., Genc, A., Amine, K., Thevuthasan, S., Baer, D.R., Zhang, J-G., Browning, N.D., Liu, J., and Wang, C.: Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760 (2013).
89. Croy, J.R., Balasubramanian, M., Kim, D., Kang, S.H., and Thackeray, M.M.: Designing high-capacity, lithium-ion cathodes using X-ray absorption spectroscopy. Chem. Mater. 23, 5414 (2011).
90. Koga, H., Croguennec, L., Ménétrier, M., Mannessiez, P., Weill, F., Delmas, C., and Belin, S.: Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li ion batteries. J. Phys. Chem. C 118, 5700 (2014).
91. Croy, J.R., Gallagher, K.G., Balasubramanian, M., Long, B.R., and Thackeray, M.M.: Quantifying Hysteresis and voltage fade in xLi2MnO3·(1 − x)LiMn0.5Ni0.5O2 electrodes as a function of Li2MnO3 content. J. Electrochem. Soc. 161, A318 (2014).
92. Yu, X., Lyu, Y., Gu, L., Wu, H., Bak, S.M., Zhou, Y., Amine, K., Ehrlich, S.N., Li, H., Nam, K-W., and Yang, X-Q.: Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 4, 1300950 (2014).
93. Nurullah Ates, M., Mukerjee, S., and Abraham, K.M.: A search for the optimum lithium rich layered metal oxide cathode material for Li-ion batteries. J. Electrochem. Soc. 161, A355 (2014).
94. Ito, A., Sato, Y., Sanada, T., Hatano, M., Horie, H., and Ohsawa, Y.: In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 . J. Power Sources 196, 6828 (2011).
95. Wang, Z.L., Yin, J.S., and Jiang, Y.D.: EELS analysis of cation valence states and oxygen vacancies in magnetic oxides. Micron 31, 571 (2000).
96. Xu, B., Fell, C.R., Chi, M., and Meng, Y.S.: Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci. 4, 2223 (2011).
97. Grey, C.P. and Dupré, N.: NMR studies of cathode materials for lithium-ion rechargeable batteries. Chem. Rev. 104, 4493 (2004).
98. Chernova, N.A., Nolis, G.M., Omenya, F.O., Zhou, H., Lia, Z., and Whittingham, M.S.: What can we learn about battery materials from their magnetic properties? J. Mater. Chem. 21, 9865 (2011).
99. Key, B.: Solid State NMR Studies of Li-Rich NMC Cathodes: Investigating Structure Change and Its Effect on Voltage Fade Phenomenon, US DOE Annual Merit Review Meeting, Washington, DC, 2014.
100. Fell, C.R., Chi, M., Meng, Y.S., and Jones, J.L.: In situ X-ray diffraction study of the lithium excess layered oxide compound Li[Li0.2Ni0.2Mn0.6]O2 during electrochemical cycling. Solid State Ionics 207, 44 (2012).
101. Lu, Z. and Dahn, J.R.: Understanding the anomalous capacity of Li/Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 cells using In Situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 149, A815 (2002).
102. Boulineau, A., Simonin, L., Colin, J-F., Bourbon, C., and Patoux, S.: Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the initial charge/discharge cycle studied by advanced electron microscopy. Nano Lett. 13, 3857 (2013).
103. Dixit, H., Zhou, W., Idrobo, J-C., Nanda, J., and Cooper, V.R.: Facet-dependent disorder in pristine high-voltage lithium–manganese-rich cathode material. ACS Nano 8, 12710 (2014).
104. Fell, C.R., Qian, D., Carroll, K.J., Chi, M., Jones, J.L., and Meng, Y.S.: Correlation between oxygen vacancy, microstrain, and cation distribution in lithium-excess layered oxides during the first electrochemical cycle. Chem. Mater. 25, 1621 (2013).
105. Carroll, K.J., Qian, D., Fell, C.R., Calvin, S., Veith, G.M., Chi, M., Baggetto, L., and Meng, Y.S.: Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2 . Phys. Chem. Chem. Phys. 15, 11128 (2013).
106. Sathiya, M., Abakumov, A.M., Foix, D., Rousse, G., Ramesha, K., Saubanère, M., Doublet, M.L., Vezin, H., Laisa, C.P., Prakash, A.S., Gonbeau, D., VanTendeloo, G., and Tarascon, J-M.: Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230 (2014).
107. Wang, Y., Bie, X., Nikolowski, K., Ehrenberg, H., Du, F., Hinterstein, M., Wang, C., Chen, G., and Wei, Y.: Relationships between structural changes and electrochemical kinetics of Li-excess Li1.13Ni0.3Mn0.57O2 during the first charge. J. Phys. Chem. C 117, 3279 (2013).
108. Simonin, L., Colin, J.F., Ranieri, V., Canevet, E., Martin, J.F., Bourbon, C., Baehtz, C., Strobel, P., Daniel, L., and Patoux, S.: In situ investigations of a Li-rich Mn–Ni layered oxide for Li-ion batteries. J. Mater. Chem. A 22, 11316 (2012).
109. Heng Shen, C., Huang, L., Lin, Z., Shen, S-Y., Wang, Q., Su, H., Fu, F., and Zheng, X-M.: Kinetics and structural changes of Li-rich layered oxide 0.5Li2MnO3·0.5LiNi0.292Co0.375Mn0.333O2 material investigated by a novel technique combining in situ XRD and a multipotential step. ACS Appl. Mater. Interfaces 6, 13271 (2014).
110. Shen, C.H., Wang, Q., Fu, F., Huang, L., Lin, Z., Shen, S.Y., Su, H., Zheng, X.M., Xu, B.B., Li, J.T., and Sun, S.G.: Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge–discharge cycle: In situ XRD characterization. ACS Appl. Mater. Interfaces 6, 5516 (2014).
111. Hy, S., Felix, F., Rick, J., Su, W.N., and Hwang, B.J.: Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li[Ni x Li(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤0.5). J. Am. Chem. Soc. 136, 999 (2013).
112. Ohzuku, T., Nagayama, M., Tsuji, K., and Ariyoshi, K.: High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1 . J. Mater. Chem. 21, 10188 (2011).
113. Zheng, J., Gu, M., Xiao, J., Zuo, P., Wang, C., and Zhang, J-G.: Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 13, 38243830 (2013).
114. Qian, D., Xu, B., Chi, M., and Meng, Y.S.: Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys. Chem. Chem. Phys. 15, 14664 (2014).
115. Verde, M.G., Liu, H., Carroll, K.J., Baggetto, L., Veith, G.M., and Meng, Y.S.: Effect of morphology and manganese valence on the voltage fade and capacity retention of Li[Li2/12Ni3/12Mn7/12]O2 . ACS Appl. Mater. Interfaces 6, 18868 (2014).
116. Nurullah Ates, M., Jia, Q., Shah, A., Busnaina, A., Mukerjee, S., and Abrahama, K.M.: Mitigation of layered to spinel conversion of a Li-rich layered metal oxide cathode material for Li-ion batteries. J. Electrochem. Soc. 161, A290A301 (2014).
117. Li, Q., Li, G., Fu, C., Luo, D., Fan, J., and Li, L.: K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 10330 (2014).
118. Knight, J.C., Nandakumar, P., Kan, W.H., and Manthiram, A.: Effect of Ru substitution on the first charge–discharge cycle of lithium-rich layered oxides. J. Mater. Chem. A 3, 2006 (2015).
119. Yang, X., Wang, D., Yu, R., Bai, Y., Shu, H., Ge, L., Guo, H., Wei, Q., Liu, L., and Wang, X.: Suppressed capacity/voltage fading of high-capacity lithium-rich layered materials via the design of heterogeneous distribution in the composition. J. Mater. Chem. A 2, 3899 (2014).
120. Lee, E.S. and Manthiram, A.: Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay. J. Mater. Chem. A 2, 3932 (2014).
121. Hautier, Geoffroy, Jain, Anubhav, Chen, Hailong, Moore, Charles, Ping Ong, Shyue and Ceder, Gerbrand, Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations; Journal of Materials Chemistry, 21, 17147 (2011).
122. Thackeray, Michael M., Wolverton, Christopher and Isaacs, Eric D., Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries; Energy and Environmental Science 5, 7854 (2012).

Keywords

Related content

Powered by UNSILO

Understanding the structure and structural degradation mechanisms in high-voltage, lithium-manganese–rich lithium-ion battery cathode oxides: A review of materials diagnostics

  • Debasish Mohanty (a1), Jianlin Li (a1), Shrikant C. Nagpure (a1), David L. Wood (a2) and Claus Daniel (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.