Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-30T04:02:16.205Z Has data issue: false hasContentIssue false

High-voltage applications of the triboelectric nanogenerator—Opportunities brought by the unique energy technology

Published online by Cambridge University Press:  24 February 2020

Jiaqi Wang
Affiliation:
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China; and Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong, China
Yunlong Zi*
Affiliation:
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China; and Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong, China
Shuyao Li
Affiliation:
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People’s Republic of China; and School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
Xiangyu Chen*
Affiliation:
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People’s Republic of China; and School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
*
a)Address all correspondence to Xiangyu Chen at chenxiangyu@binn.cas.cn and Yunlong Zi at ylzi@cuhk.edu.hk
a)Address all correspondence to Xiangyu Chen at chenxiangyu@binn.cas.cn and Yunlong Zi at ylzi@cuhk.edu.hk
Get access

Abstract

Self-powered smart systems utilizing the high voltages generated by triboelectric nanogenerators (TENGs) have been systematically reviewed, with several featured applications highlighted, including electrospray, optical device, microplasma, and microfluidic.

To provide a sustainable power solution for electronics, triboelectric nanogenerator (TENG) has been developed since 2012 for high-efficiency mechanical energy harvesting from the ambient environment. TENG has very unique output characteristics including high voltage and limited current density. Thus, it is challenging to directly power most of the commercial electronics in high efficiency. However, these features also bring opportunities for high-voltage applications. Here, we will review the efforts for developing TENG as a controllable high-voltage power source for various applications. The review article will start from fundamental studies about how the high-voltage output was generated, and then, several representative research in recent years will be reviewed, including electrospray, optical devices, microplasma, field emission, and electrically responsive materials. These studies will drive the further development of TENG technology for broad applications and industrializations toward high-efficiency self-powered systems.

Type
Review Article
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fan, F-R., Tian, Z-Q., and Wang, Z.L.: Flexible triboelectric generator. Nano energy 1(2), 328334 (2012).CrossRefGoogle Scholar
Wang, S., Lin, L., and Wang, Z.L.: Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11, 436462 (2015).CrossRefGoogle Scholar
Pu, X., Li, L., Liu, M., Jiang, C., Du, C., Zhao, Z., Hu, W., and Wang, Z.L.: Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98105 (2016).CrossRefGoogle ScholarPubMed
Niu, S., Wang, X., Yi, F., Zhou, Y.S., and Wang, Z.L.: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6, 18 (2015).CrossRefGoogle ScholarPubMed
Zhu, G., Chen, J., Zhang, T., Jing, Q., and Wang, Z.L.: Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014).CrossRefGoogle ScholarPubMed
Yang, W., Chen, J., Jing, Q., Yang, J., Wen, X., Su, Y., Zhu, G., Bai, P., and Wang, Z.L.: 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 24(26), 40904096 (2014).CrossRefGoogle Scholar
Wang, S., Mu, X., Wang, X., Gu, A.Y., Wang, Z.L., and Yang, Y.: Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano 9(10), 95549563 (2015).CrossRefGoogle ScholarPubMed
Yang, X., Xu, L., Lin, P., Zhong, W., Bai, Y., Luo, J., Chen, J., and Wang, Z.L.: Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 60, 404412 (2019).CrossRefGoogle Scholar
Xu, M., Zhao, T., Wang, C., Zhang, S.L., Li, Z., Pan, X., and Wang, Z.L.: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano 13(2), 19321939 (2019).Google ScholarPubMed
Wang, Z.L.: On maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 20(2), 7482 (2017).CrossRefGoogle Scholar
Niu, S. and Wang, Z.L.: Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161192 (2015).CrossRefGoogle Scholar
Zhu, G., Peng, B., Chen, J., Jing, Q., and Wang, Z.L.: Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy 14, 126138 (2015).CrossRefGoogle Scholar
Zhu, G., Yang, W.Q., Zhang, T., Jing, Q., Chen, J., Zhou, Y.S., Bai, P., and Wang, Z.L.: Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 14(6), 32083213 (2014).CrossRefGoogle ScholarPubMed
Lin, Z., Chen, J., Li, X., Zhou, Z., Meng, K., Wei, W., Yang, J., and Wang, Z.L.: Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 11(9), 88308837 (2017).CrossRefGoogle ScholarPubMed
Yu, H., He, X., Ding, W., Hu, Y., Yang, D., Lu, S., Wu, C., Zou, Y., Liu, R., Lu, C., and Wang, Z.L.: A self-powered dynamic displacement monitoring system based on triboelectric accelerometer. Adv. Energy Mater. 7(19), 1700565 (2017).CrossRefGoogle Scholar
Su, Y., Xie, G., Xie, T., Zhang, H., Ye, Z., Jing, Q., Tai, H., Du, X., and Jiang, Y.: Wind energy harvesting and self-powered flow rate sensor enabled by contact electrification. J. Phys. D: Appl. Phys. 49(21), 215601 (2016).CrossRefGoogle Scholar
Zi, Y. and Wang, Z.L.: Nanogenerators: An emerging technology towards nanoenergy. APL Mater. 5(7), 074103 (2017).CrossRefGoogle Scholar
Wang, Z.L., Lin, L., Chen, J., Niu, S., and Zi, Y.: Triboelectric Nanogenerators (Springer International Publishing, Berlin, Germany, 2016).CrossRefGoogle ScholarPubMed
Nie, J., Chen, X., and Wang, Z.L.: Electrically responsive materials and devices directly driven by the high voltage of triboelectric nanogenerators. Adv. Funct. Mater. 29(4) 1806351 (2018).CrossRefGoogle Scholar
Ghaffarinejad, A., Hasani, J.Y., Hinchet, R., Lu, Y., Zhang, H., Karami, A., Galayko, D., Kim, S., and Basset, P.: A conditioning circuit with exponential enhancement of output energy for triboelectric nanogenerator. Nano Energy 51, 173184 (2018).CrossRefGoogle Scholar
Zhang, H., Lu, Y., Ghaffarinejad, A., and Basset, P.: Progressive contact-separate triboelectric nanogenerator based on conductive polyurethane foam regulated with a Bennet doubler conditioning circuit. Nano energy 51, 1018 (2018).CrossRefGoogle Scholar
Wang, S., Xie, Y., Niu, S., Lin, L., Liu, C., Zhou, Y.S., and Wang, Z.L.: Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 26(39), 67206728 (2014).CrossRefGoogle ScholarPubMed
Zi, Y., Wu, C., Ding, W., and Wang, Z.L.: Maximized effective energy output of contact-separation-triggered triboelectric nanogenerators as limited by air breakdown. Adv. Funct. Mater. 27(24), 1700049 (2017).CrossRefGoogle Scholar
Wang, J., Wu, C., Dai, Y., Zhao, Z., Wang, A., Zhang, T., and Wang, Z.L.: Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 8(1), 88 (2017).CrossRefGoogle ScholarPubMed
Fan, F.R., Lin, L., Zhu, G., Wu, W., Zhang, R., and Wang, Z.L.: Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12(6), 31093114 (2012).CrossRefGoogle ScholarPubMed
Yang, P.K., Lin, Z.H., Pradel, K.C., Lin, L., Li, X., Wen, X., He, Jr., and Wang, Z.L.: Based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 9(1), 901907 (2015).CrossRefGoogle ScholarPubMed
Lee, K.Y., Yoon, H.J., Jiang, T., Wen, X., Seung, W., Kim, S.W., and Wang, Z.L.: Fully packaged self-powered triboelectric pressure sensor using hemispheres-array. Adv. Energy Mater. 6(11), 1502566 (2016).CrossRefGoogle Scholar
Fan, X., Chen, J., Yang, J., Bai, P., Li, Z., and Wang, Z.L.: Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 9(4), 42364243 (2015).CrossRefGoogle ScholarPubMed
Cui, N., Gu, L., Liu, J., Bai, S., Qiu, J., Fu, J., Kou, X., Liu, H., Qin, Y., and Wang, Z.L.: High performance sound driven triboelectric nanogenerator for harvesting noise energy. Nano Energy 15, 321328 (2015).CrossRefGoogle Scholar
Xie, Y., Wang, S., Niu, S., Lin, L., Jing, Q., Yang, J., Wu, Z., and Wang, Z.L.: Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26(38), 65996607 (2014).CrossRefGoogle ScholarPubMed
Niu, S., Wang, S., Liu, Y., Zhou, Y.S., Lin, L., Hu, Y., Pradel, K.C., and Wang, Z.L.: A theoretical study of grating structured triboelectric nanogenerators. Energy Environ. Sci. 7(7), 23392349 (2014).CrossRefGoogle Scholar
Wang, M., Zhang, N., Tang, Y., Zhang, H., Ning, C., Tian, L., Li, W., Zhang, J., Mao, Y., and Liang, E.: Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics. J. Mater. Chem. A 5(24), 1225212257 (2017).CrossRefGoogle Scholar
Mao, Y., Geng, D., Liang, E., and Wang, X.: Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy 15, 227234 (2015).CrossRefGoogle Scholar
Wang, S., Xie, Y., Niu, S., Lin, L., and Wang, Z.L.: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26(18), 28182824 (2014).CrossRefGoogle ScholarPubMed
Zou, H., Zhang, Y., Guo, L., Wang, P., He, X., Dai, G., Zheng, H., Chen, C., Wang, A.C., Xu, C., and Wang, Z.L.: Quantifying the triboelectric series. Nat. Commun. 10(1), 19 (2019).CrossRefGoogle ScholarPubMed
Clint, J.H. and Dunstan, T.S.: Acid-base components of solid surfaces and the triboelectric series. Europhys. Lett. 54(3), 320 (2001).CrossRefGoogle Scholar
Tang, W., Jiang, T., Fan, F.R., Yu, A.F., Zhang, C., Cao, X., and Wang, Z.L.: Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 25(24), 37183725 (2015).CrossRefGoogle Scholar
Park, S.J., Seol, M.L., Jeon, S.B., Kim, D., Lee, D., and Choi, Y.K.: Surface engineering of triboelectric nanogenerator with an electrodeposited gold nanoflower structure. Sci. Rep. 5, 17 (2015).Google ScholarPubMed
Truxal, S.C., Kurabayashi, K., and Tung, Y-C.: Design of a MEMS tunable polymer grating for single detector spectroscopy. Int. J. Optomechatronics 2(2), 7587 (2008).CrossRefGoogle Scholar
Paloczi, G.T., Huang, Y., Yariv, A., Luo, J., and Jen, A.K.Y.: Replica-molded electro-optic polymer Mach–Zehnder modulator. Appl. Phys. Lett. 85(10), 16621664 (2004).CrossRefGoogle Scholar
Huang, G., Shin, J.S., Lee, W.J., Park, T.H., Chu, W.S., and Oh, M.C.: Surface relief apodized grating tunable filters produced by using a shadow mask. Optic Express 23(16), 2109021096 (2015).CrossRefGoogle ScholarPubMed
Kollosche, M., Döring, S., Stumpe, J., and Kofod, G.: Voltage-controlled compression for period tuning of optical surface relief gratings. Optic Lett. 36(8), 13891391 (2011).CrossRefGoogle ScholarPubMed
Aschwanden, M. and Stemmer, A.: Polymeric, electrically tunable diffraction grating based on artificial muscles. Optic Lett. 31(17), 26102612 (2006).CrossRefGoogle ScholarPubMed
Kofod, G. et al.: Electroelastic optical fiber positioning with submicrometer accuracy: Model and experiment. Appl. Phys. Lett. 94(20), 202901 (2009).CrossRefGoogle Scholar
Hajiesmaili, E. and Clarke, D.R.: Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nat. Commun. 10(1), 183 (2019).CrossRefGoogle ScholarPubMed
Maffli, L., Rosset, S., Ghilardi, M., Carpi, F., and Shea, H.: Ultrafast all-polymer electrically tunable silicone lenses. Adv. Funct. Mater. 25(11), 16561665 (2015).CrossRefGoogle Scholar
Anderson, I.A., Hale, T., Gisby, T., Inamura, T., McKay, T., O’Brien, B., Walbran, S., and Calius, E.P.: A thin membrane artificial muscle rotary motor. Appl. Phys. A: Mater. Sci. Process. 98(1), 75 (2010).CrossRefGoogle Scholar
Keplinger, C., Sun, J.Y., Foo, C.C., Rothemund, P., Whitesides, G.M., and Suo, Z.: Stretchable, transparent, ionic conductors. Science 341(6149), 984987 (2013).CrossRefGoogle ScholarPubMed
Chen, X., Wu, Y., Yu, A., Xu, L., Zheng, L., Liu, Y., Li, H., and Wang, Z.L.: Self-powered modulation of elastomeric optical grating by using triboelectric nanogenerator. Nano Energy 38, 91100 (2017).CrossRefGoogle Scholar
Chen, X., Pu, X., Jiang, T., Yu, A., Xu, L., and Wang, Z.L.: Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer. Adv. Funct. Mater. 27(1), 1603788 (2017).CrossRefGoogle Scholar
Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y.S., Hu, Y., and Wang, Z.L.: Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 24(22), 33323340 (2014).CrossRefGoogle Scholar
Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., and Wang, Z.L.: Self-powered nanowire devices. Nat. Nanotechnol. 5(5), 366373 (2010).CrossRefGoogle ScholarPubMed
Hwang, G.T., Park, H., Lee, J.H., Oh, S., Park, K.I., Byun, M., Park, H., Ahn, G., Jeong, C.K., No, K., Kwon, H., Lee, S-G., Joung, B., and Kwon, H.: Nanogenerators: Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester (Adv. Mater. 28/2014). Adv. Mater. 26(28), 4754–4754 (2014).CrossRefGoogle Scholar
Lee, J.H., Lee, K.Y., Gupta, M.K., Kim, T.Y., Lee, D.Y., Oh, J., Ryu, C., Yoo, W.J., Kang, C.Y., Yoon, S., Yoo, J.B., and Kim, S.: Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv. Mater. 26(5), 765769 (2014).CrossRefGoogle ScholarPubMed
Ding, W., Wu, C., Zi, Y., Zou, H., Wang, J., Cheng, J., Wang, A.C., and Wang, Z.L.: Self-powered wireless optical transmission of mechanical agitation signals. Nano Energy 47, 566572 (2018).CrossRefGoogle Scholar
Yang, C.H., Chen, B., Zhou, J., Chen, Y.M., and Suo, Z.: Electroluminescence of giant stretchability. Adv. Mater. 28(22), 44804484 (2016).CrossRefGoogle ScholarPubMed
Shian, S. and Clarke, D.R.: Electrically tunable window device. Opt. Lett. 41(6), 1289 (2016).CrossRefGoogle ScholarPubMed
Shian, S., Bertoldi, K., and Clarke, D.R.: Dielectric elastomer based grippers for soft robotics. Adv. Mater. 27(43), 68146819 (2016).CrossRefGoogle Scholar
Conrad, H., Schenk, H., Kaiser, B., Langa, S., Gaudet, M., Schimmanz, K., Stolz, M., and Lenz, M.: A small-gap electrostatic micro-actuator for large deflections. Nat. Commun. 6, 17 (2015).CrossRefGoogle ScholarPubMed
Zhang, W.M., Yan, H., Peng, Z.K., and Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: A review. Sens. Actuators, A 214(4), 187218 (2014).CrossRefGoogle Scholar
Prins, M.W., Welters, W.J., and Weekamp, J.W.: Fluid control in multichannel structures by electrocapillary pressure. Science 291(5502), 277280 (2001).CrossRefGoogle ScholarPubMed
Moon, H., Cho, S.K., Garrell, R.L., and Kim, C.J.C.: Low voltage electrowetting-on-dielectric. J. Appl. Phys. 92(7), 40804087 (2002).CrossRefGoogle Scholar
Eow, J.S. and Ghadiri, M.: Motion, deformation and break-up of aqueous drops in oils under high electric field strengths. Chem. Eng. Process. 42(4), 259272 (2003).CrossRefGoogle Scholar
Nazemi, M.H. and Hinrichsen, V.: Experimental investigations on water droplet oscillation and partial discharge inception voltage on polymeric insulating surfaces under the influence of AC electric field stress. IEEE Trans. Dielectr. Electr. Insul. 20(2), 443453 (2013).CrossRefGoogle Scholar
Li, J., Wei, Y., Huang, Z., Wang, F., Yan, X., and Wu, Z.: Electrohydrodynamic behavior of water droplets on a horizontal super hydrophobic surface and its self-cleaning application. Appl. Surf. Sci. 403, 133140 (2017).CrossRefGoogle Scholar
Chen, X., Iwamoto, M., Shi, Z., Zhang, L., and Wang, Z.L.: Self-powered trace memorization by conjunction of contact-electrification and ferroelectricity. Adv. Funct. Mater. 25(5), 739747 (2015).CrossRefGoogle Scholar
Jeong, C.K., Kim, I., Park, K.I., Oh, M.H., Paik, H., Hwang, G.T., No, K., Nam, Y.S., and Lee, K.J.: Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 7(12), 1101611025 (2013).CrossRefGoogle ScholarPubMed
Nie, J., Jiang, T., Shao, J., Ren, Z., Bai, Y., Iwamoto, M., Chen, X., and Wang, Z.L.: Motion behavior of water droplets driven by triboelectric nanogenerator. Appl. Phys. Lett. 112(18), 183701 (2018).CrossRefGoogle Scholar
Hayes, R.A. and Johan Feenstra, B.: Video-speed electronic paper based on electrowetting. Nature 425(6956), 383 (2003).CrossRefGoogle ScholarPubMed
Chen, X., Wu, Y., Shao, J., Jiang, T., Yu, A., Xu, L., and Wang, Z.L.: On-skin triboelectric nanogenerator and self-powered sensor with ultrathin thickness and high stretchability. Small 13(47), 1702929 (2017).CrossRefGoogle ScholarPubMed
Chen, X., Taguchi, D., Manaka, T., and Iwamoto, M.: Study of blocking effect of Cu-phthalocyanine layer in zinc oxide/pentacene/CuPc/C60/Al organic solar cells by electric field-induced optical second harmonic generation measurement. Org. Electron. 14(1), 320325 (2013).CrossRefGoogle Scholar
Zheng, L., Wu, Y., Chen, X., Yu, A., Xu, L., Liu, Y., Li, H., and Wang, Z.L.: Self-powered electrostatic actuation systems for manipulating the movement of both microfluid and solid objects by using triboelectric nanogenerator. Adv. Funct. Mater. 27(16), 1606408 (2017).CrossRefGoogle Scholar
Nie, J., Ren, Z., Shao, J., Deng, C., Xu, L., Chen, X., Li, M., and Wang, Z.L.: Self-powered microfluidic transport system based on triboelectric nanogenerator and electrowetting technique. ACS Nano 12(2), 14911499 (2018).CrossRefGoogle ScholarPubMed
Zhong, J., Zhong, Q., Fan, F., Zhang, Y., Wang, S., Hu, B., Wang, Z.L., and Zhou, J.: Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy 2(4), 491497 (2013).CrossRefGoogle Scholar
Wang, X., Yin, Y., Yi, F., Dai, K., Niu, S., Han, Y., Zhang, Y., and You, Z.: Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics. Nano Energy 39, 429436 (2017).CrossRefGoogle Scholar
Hinchet, R. and Kim, S-W.: Wearable and implantable mechanical energy harvesters for self-powered biomedical systems. ACS Nano 9(8), 77427745 (2015).CrossRefGoogle ScholarPubMed
Han, H-V., Lu, A-Y, Lu, L-S, Huang, J-K, Li, H, Hsu, C-L, Lin, Y-C, Chiu, M-H, Suenaga, K, Chu, C-W, Kuo, H-C, Chang, W-H, Li, L-J, and Shi, Y.: Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano 10(1), 14541461 (2016).CrossRefGoogle ScholarPubMed
Bu, T. et al.: Triboelectric effect-driven liquid metal actuators. Soft Robot. 6(5), 664670 (2019).CrossRefGoogle ScholarPubMed
Wang, Q., Yang, Y., and Liu, J.: Preparations, characteristics and applications of the functional liquid metal materials. Adv. Eng. Mater. 20(5), 1700781 (2018).CrossRefGoogle Scholar
Daeneke, T., Khoshmanesh, K., Mahmood, N., De Castro, I.A., Esrafilzadeh, D., Barrow, S.J., Dickey, M.D., and Kalantar-Zadeh, K.: Liquid metals: Fundamentals and applications in chemistry. Chem. Soc. Rev. 47(11), 40734111 (2018).CrossRefGoogle ScholarPubMed
Monat, C., Domachuk, P., and Eggleton, B.J.: Integrated optofluidics: A new river of light. Nat. Photon. 1(2), 106 (2007).CrossRefGoogle Scholar
Atencia, J. and Beebe, D.J.: Controlled microfluidic interfaces. Nature 437(7059) 648655 (2005).CrossRefGoogle ScholarPubMed
Sheng, L., Zhang, J., and Liu, J.: Diverse transformations of liquid metals between different morphologies. Adv. Mater. 26(34), 60366042 (2014).CrossRefGoogle ScholarPubMed
Zhang, J., Sheng, L., and Liu, J.: Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Sci. Rep. 4, 7116 (2014).CrossRefGoogle ScholarPubMed
Zhang, J., Yao, Y., Sheng, L., and Liu, J.: Self-fueled biomimetic liquid metal mollusk. Adv. Mater. 27(16), 26482655 (2015).CrossRefGoogle ScholarPubMed
Hu, L., Wang, L., Ding, Y., Zhan, S., and Liu, J.: Manipulation of liquid metals on a graphite surface. Adv. Mater. 28(41), 92109217 (2016).CrossRefGoogle ScholarPubMed
Wang, J., Wang, H., Li, X., and Zi, Y.: Self-powered electrowetting optical switch driven by a triboelectric nanogenerator for wireless sensing. Nano Energy 66, 104140 (2019).CrossRefGoogle Scholar
Bai, P., Zhu, G., Jing, Q., Yang, J., Chen, J., Su, Y., Ma, J., Zhang, G., and Wang, Z.L.: Membrane-based self-powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring. Adv. Funct. Mater. 24(37), 58075813 (2014).CrossRefGoogle Scholar
Xu, M., Wang, S., Zhang, S.L., Ding, W., Kien, P.T., Wang, C., Li, Z., Pan, X., and Wang, Z.L.: A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy 57, 574580 (2019).CrossRefGoogle Scholar
Luo, J., Fan, F.R., Zhou, T., Tang, W., Xue, F., and Wang, Z.L.: Ultrasensitive self-powered pressure sensing system. Extreme. Mech. Lett. 2, 2836 (2015).CrossRefGoogle Scholar
Chen, Y., Zhang, Y., Zhan, T., Lin, Z., Zhang, S.L., Zou, H., Zhang, G., Zou, C., and Wang, Z.L.: An elastic triboelectric nanogenerator for harvesting random mechanical energy with multiple working modes. Adv. Mater. Technol. 4(7), 1900075 (2019).CrossRefGoogle Scholar
Chan, V.W.S.: Free-space optical communications. J. Lightwave Technol. 24(12), 47504762 (2006).CrossRefGoogle Scholar
Kiasaleh, K.: Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence. IEEE Trans. Commun. 53, 14551461 (2005).CrossRefGoogle Scholar
Boucouvalas, A., Chatzimisios, P., Ghassemlooy, Z., Uysal, M., and Yiannopoulos, K.: Standards for indoor optical wireless communications. IEEE Commun. Mag. 53, 2431 (2015).CrossRefGoogle Scholar
Moss, B.R., Orcutt, J.S., and Stojanovic, V.M.: Devices and techniques for integrated optical data communication. U.S. Patent Application No. 16/150,965 (2018).Google Scholar
Silberberg, Y., Perlmutter, P., and Baran, J.: Digital optical switch. Appl. Phys. Lett. 51, 12301232 (1987).CrossRefGoogle Scholar
Mugele, F. and Baret, J.: Electrowetting: From basics to applications. J. Phys.: Condens. Matter 17, R705 (2005).Google Scholar
Roh, H.S., Lee, C.M., Hwang, Y.H., Kook, M.S., Yang, S.W., Lee, D., and Kim, B.H.: Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Mater. Sci. Eng., C 74, 525535 (2017).CrossRefGoogle ScholarPubMed
Zhang, C., Lin, H., Zhang, S., Xie, Q., Ren, C., and Shao, T.: Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages. J. Phys. D: Appl. Phys. 50, 405203 (2017).CrossRefGoogle Scholar
Kim, T.H., Lee, S.M., Lee, C.H., Bae, J.O., Yeom, G.Y., and Kim, K.N.: Characteristics of pulsed internal inductively coupled plasma for next generation display processing. J. Nanosci. Nanotechnol. 14, 96149618 (2014).CrossRefGoogle ScholarPubMed
Lee, S.M., Kim, D., Jeon, D.Y., and Choi, K.C.: Nanoplasmon-enhanced transparent plasma display devices. Small 8, 13501354 (2012).CrossRefGoogle ScholarPubMed
Haertel, B., von Woedtke, T., Weltmann, K.D., and Lindequist, U.: Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol. Ther. 22, 477490 (2014).CrossRefGoogle ScholarPubMed
Graves, D.B.: The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D: Appl. Phys. 45, 263001 (2012).CrossRefGoogle Scholar
Cheng, J., Ding, W., Zi, Y., Lu, Y., Ji, L., Liu, F., Wu, C., and Wang, Z.L.: Triboelectric microplasma powered by mechanical stimuli. Nat. Commun. 9(1), 111 (2018).CrossRefGoogle ScholarPubMed
Liu, C., Wang, Q-H., and Wang, M-H.: Mirror reflector actuated by liquid droplet. IEEE Photonics Technol. Lett. 26(11), 10771080 (2014).Google Scholar
Zhang, C., Tang, W., Pang, Y., Han, C., and Wang, Z.L.: Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator. Adv. Mater. 27(4), 719726 (2015).CrossRefGoogle ScholarPubMed
Yang, H., Pang, Y., Bu, T., Liu, W., Luo, J., Jiang, D., Zhang, C., and Wang, Z.L.: Triboelectric micromotors actuated by ultralow frequency mechanical stimuli. Nat. Commun. 10(1), 17 (2019).Google ScholarPubMed
Solgaard, O., Godil, A.A., Howe, R.T., Lee, L.P., Peter, Y.A., and Zappe, H.: Optical MEMS: From micromirrors to complex systems. J. Microelectromech. Syst. 23(3), 517538 (2014).CrossRefGoogle Scholar
Xie, Z., Jiao, S., Zhang, H.F., and Puliafito, C.A.: Laser-scanning optical-resolution photoacoustic microscopy. Optic Lett. 34(12), 17711773 (2009).CrossRefGoogle ScholarPubMed
Monkman, G.J.: An analysis of astrictive prehension. Int. J. Robot Res. 16(1), 110 (1997).CrossRefGoogle Scholar
Graule, M.A., Chirarattananon, P., Fuller, S.B., Jafferis, N.T., Ma, K.Y., Spenko, M., Kornbluh, R., and Wood, R.J.: Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion. Science 352(6288), 978982 (2016).CrossRefGoogle ScholarPubMed
Shintake, J., Rosset, S., Schubert, B., Floreano, D., and Shea, H.: Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 28(2), 231238 (2016).CrossRefGoogle ScholarPubMed
Guo, J., Bamber, T., Chamberlain, M., Justham, L., and Jackson, M.: Optimization and experimental verification of coplanar interdigital electroadhesives. J. Phys. D: Appl. Phys. 49(41), 415304 (2016).CrossRefGoogle Scholar
Ruffatto, D. III, Parness, A., and Spenko, M.: Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive. J. R. Soc. Interface 11(93), 20131089 (2014).CrossRefGoogle ScholarPubMed
Asano, K., Hatakeyama, F., and Yatsuzuka, K.: Fundamental study of an electrostatic chuck for silicon wafer handling. IEEE Trans. Ind. Appl. 38(3), 840845 (2002).CrossRefGoogle Scholar
Xu, L., Wu, H., Yao, G., Chen, L., Yang, X., Chen, B., Huang, X., Zhong, W., Chen, X., Yin, Z., and Wang, Z.L.: Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion. ACS Nano 12(10), 1026210271 (2018).CrossRefGoogle ScholarPubMed
Guo, J., Bamber, T., Singh, J., Manby, D., Bingham, P.A., Justham, L., Petzing, J., Penders, J., and Jackson, M.: Experimental study of a flexible and environmentally stable electroadhesive device. Appl. Phys. Lett. 111(25), 251603 (2017).CrossRefGoogle Scholar
Rus, D. and Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467475 (2015).CrossRefGoogle ScholarPubMed
Wang, Z.L.: ACS Nano 7, 9533 (2013); Z.L. Wang: Faraday Discuss 176, 447 (2014).CrossRefGoogle Scholar
Wang, Z.L., Chen, J., and Lin, L.: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 22502282 (2015).CrossRefGoogle Scholar
Yang, C., Yang, G., Ouyang, Q., Kuang, S., Song, P., Xu, G., Poenar, D.P., Zhu, G., Yong, K.T., and Wang, Z.L.: Nanowire-array-based gene electro-transfection system driven by human-motion operated triboelectric nanogenerator. Nano Energy 64, 103901 (2019).CrossRefGoogle Scholar
Bellan, L.M. and Craighead, H.G.: Nanomanufacturing using electrospinning. J. Manuf. Sci. Eng. 131(3), 034001 (2009).CrossRefGoogle Scholar
Li, D. and Xia, Y.: Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 16(14), 11511170 (2010).CrossRefGoogle Scholar
Bhardwaj, N. and Kundu, S.C.: Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 28(3), 325347 (2010).CrossRefGoogle ScholarPubMed
Huang, Z.M., Zhang, Y.Z., Kotaki, M., and Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 22232253 (2003).CrossRefGoogle Scholar
Deitzel, J.M., Kleinmeyer, J., Harris, D.E.A., and Tan, N.B.: The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1), 261272 (2001).CrossRefGoogle Scholar
Cho, J.S., Young, J.H., and Kang, Y.C.: Design and synthesis of bubble-nanorod-structured Fe2O3–carbon nanofibers as advanced anode material for Li-ion batteries. ACS Nano 9(4), 40264035 (2015).CrossRefGoogle ScholarPubMed
Sridhar, R., Lakshminarayanan, R., Madhaiyan, K., Barathi, V.A., Lim, K.H.C., and Ramakrishna, S.: Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: Applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev. 44(3), 790814 (2015).CrossRefGoogle ScholarPubMed
Hu, X., Liu, S., Zhou, G., Huang, Y., Xie, Z., and Jing, X.: Electrospinning of polymeric nanofibers for drug delivery applications. J. Contr. Release 185, 1221 (2014).CrossRefGoogle ScholarPubMed
Strain, I.N., Wu, Q., Pourrahimi, A.M., Hedenqvist, M.S., Olsson, R.T., and Andersson, R.L.: Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration. J. Mater. Chem. A 3(4), 16321640 (2015).CrossRefGoogle Scholar
Li, W., Ma, S., Li, Y., Yang, G., Mao, Y., Luo, J., Gengzang, D., Xu, X., and Yan, S.: Enhanced ethanol sensing performance of hollow ZnO–SnO2 core–shell nanofibers. Sens. Actuators, B 211, 392402 (2015).CrossRefGoogle Scholar
Taylor, G.I.: Disintegration of water drops in an electric field. Proc. R. Soc. London, Ser. A 280(1382), 383397 (1964).Google Scholar
Secor, E.B.: Principles of aerosol jet printing. Flexible Printed Electron. 3(3), 035002 (2018).CrossRefGoogle Scholar
Chang, Y.H., Wang, K., Wu, C., Chen, Y., Zhang, C., and Wang, B.: A facile method for integrating direct-write devices into three-dimensional printed parts. Smart Mater. Struct. 24(6), 065008 (2015).CrossRefGoogle Scholar
Park, J.U., Hardy, M., Kang, S.J., Barton, K., Adair, K., Kishore Mukhopadhyay, D., Lee, C.Y., Strano, M.S., Alleyne, A.G., Georgiadis, J.G., Ferreira, P.M., and Rogers, J.A.: High-resolution electrohydrodynamic jet printing. Nat. Mater. 6(10), 782789 (2007).CrossRefGoogle ScholarPubMed
Wu, C., Tetik, H., Cheng, J., Ding, W., Guo, H., Tao, X., Zhou, N., Zi, Y., Wu, Z., Wu, Z., Lin, D., and Wang, Z.L.: Electrohydrodynamic jet printing driven by a triboelectric nanogenerator. Adv. Funct. Mater. 29(22), 1901102 (2019).CrossRefGoogle Scholar
Wang, H.S., Jeong, C.K., Seo, M.H., Joe, D.J., Han, J.H., Yoon, J.B., and Lee, K.J.: Performance-enhanced triboelectric nanogenerator enabled by wafer-scale nanogrates of multistep pattern downscaling. Nano Energy 35, 415423 (2017).CrossRefGoogle Scholar
Seol, M.L., Han, J.W., Park, S.J., Jeon, S.B., and Choi, Y.K.: Hybrid energy harvester with simultaneous triboelectric and electromagnetic generation from an embedded floating oscillator in a single package. Nano Energy 23, 5059 (2016).CrossRefGoogle Scholar
Li, C., Yin, Y., Wang, B., Zhou, T., Wang, J., Luo, J., Tang, W., Cao, R., Yuan, Z., Li, N., Du, X., Wang, C., Zhao, S., Liu, Y., and Wang, Z.L.: Self-powered electrospinning system driven by a triboelectric nanogenerator. ACS Nano 11(10), 1043910445 (2017).CrossRefGoogle ScholarPubMed
Huo, H., Liu, F., Luo, Y., Gu, Q., Liu, Y., Wang, Z., Chen, R., Ji, L., Lu, Y., Yao, R., and Cheng, J.: Triboelectric nanogenerators for electro-assisted cell printing. Nano Energy 67, 104150 (2019).CrossRefGoogle Scholar
Wang, K., Paine, M.D., and Stark, J.P.W.: Fully voltage-controlled electrohydrodynamic jet printing of conductive silver tracks with a sub-100 μm linewidth. J. Appl. Phys. 106(2), 024907 (2009).CrossRefGoogle Scholar
Park, J.U., Lee, J.H., Paik, U., Lu, Y., and Rogers, J.A.: Nanoscale patterns of oligonucleotides formed by electrohydrodynamic jet printing with applications in biosensing and nanomaterials assembly. Nano Lett. 8(12), 42104216 (2008).CrossRefGoogle ScholarPubMed
Kim, B.H., Onses, M.S., Lim, J.B., Nam, S., Oh, N., Kim, H., Yu, K.J., Lee, J.W, Kim, J., Kang, S., Lee, C.H., Lee, J., Shin, J.H., Kim, N.H., Leal, C., Shim, M., and Rogers, J.A.: High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 15(2), 969973 (2015).CrossRefGoogle ScholarPubMed
Kim, K., Kim, G., Lee, B.R., Ji, S., Kim, S.Y., An, B.W., Song, M.H., and Park, J.U.: High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes. Nanoscale 7(32), 1341013415 (2015).CrossRefGoogle ScholarPubMed
Maher, S., Jjunju, F.P.M., and Taylor, S.: Colloquium: 100 years of mass spectrometry: Perspectives and future trends. Rev. Mod. Phys. 87(1), 113 (2015).CrossRefGoogle Scholar
Liang, X., Han, H., Xia, Y., and McLuckey, S.A.: A pulsed triple ionization source for sequential ion/ion reactions in an electrodynamic ion trap. J. Am. Soc. Mass Spectrom. 18(3), 369376 (2007).CrossRefGoogle Scholar
Bushey, J.M., Kaplan, D.A., Danell, R.M., and Glish, G.L.: Pulsed nano-electrospray ionization: Characterization of temporal response and implementation with a flared inlet capillary. Instrum. Sci. Technol. 37(3), 257273 (2009).CrossRefGoogle ScholarPubMed
Xu, W., Charipar, N., Kirleis, M.A., Xia, Y., and Ouyang, Z.: Study of discontinuous atmospheric pressure interfaces for mass spectrometry instrumentation development. Anal. Chem. 82(15), 65846592 (2010).CrossRefGoogle ScholarPubMed
Schilling, M., Janasek, D., and Franzke, J.: Electrospray-ionization driven by dielectric polarization. Anal. Bioanal. Chem. 391(2), 555561 (2008).CrossRefGoogle ScholarPubMed
Huang, G., Li, G., and Graham Cooks, R.: Induced nanoelectrospray ionization for matrix-tolerant and high-throughput mass spectrometry. Angew. Chem., Int. Ed. 50(42), 99079910 (2011).CrossRefGoogle ScholarPubMed
Shekhar, M., Wang, J., Lee, W.S., Williams, W.D., Kim, S.M., Stach, E.A., Miller, J.T., Deglass, W.N., and Ribeiro, F.H.: Size and support effects for the water–gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc. 134(10), 47004708 (2012).CrossRefGoogle ScholarPubMed
Li, A., Zi, Y., Guo, H., Wang, Z.L., and Fernández, F.M.: Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat. Nanotechnol. 12(5), 481487 (2017).CrossRefGoogle ScholarPubMed
Tang, W., Tian, J., Zheng, Q., Yan, L., Wang, J., Li, Z., and Wang, Z.L.: Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts’ proliferation and differentiation. ACS Nano 9(8), 78677873 (2015).CrossRefGoogle ScholarPubMed
Wang, S., Zi, Y., Zhou, Y.S., Li, S., Fan, F., Lin, L., and Wang, Z.L.: Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A 4(10), 37283734 (2016).CrossRefGoogle Scholar
Bernier, M.C., Li, A., Winalski, L., Zi, Y., Li, Y., Caillet, C., Newton, P., Wang, Z.L., and Fernández, F.M.: Triboelectric nanogenerator (TENG) mass spectrometry of falsified antimalarials. Rapid Commun. Mass Spectrom. 32(18), 15851590 (2018).CrossRefGoogle Scholar
Chen, J., Zhu, G., Yang, W., Jing, Q., Bai, P., Yang, Y., Hou, T., and Wang, Z.L.: Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 25(42), 60946099 (2013).CrossRefGoogle Scholar
Ahmed, A., Hassan, I., Ibn-Mohammed, T., Mostafa, H., Reaney, I.M., Koh, L.S., Zu, J., and Wang, Z.L.: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ. Sci. 10(3), 653671 (2017).CrossRefGoogle Scholar
Yang, W., Chen, J., Zhu, G., Wen, X., Bai, P., Su, Y., Lin, Y., and Wang, Z.: Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 6(12), 880886 (2013).CrossRefGoogle Scholar
Chen, B., Yang, Y., and Wang, Z.L.: Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8(10), 1702649 (2018).CrossRefGoogle Scholar
Yang, J., Chen, J., Liu, Y., Yang, W., Su, Y., and Wang, Z.L.: Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 8(3), 26492657 (2014).CrossRefGoogle ScholarPubMed
Yi, F., Lin, L., Niu, S., Yang, P.K., Wang, Z., Chen, J., Zhou, Y., Zi, Y., Wang, J., Liao, Q., Zhang, Y., and Wang, Z.L.: Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors. Adv. Funct. Mater. 25(24), 36883696 (2015).CrossRefGoogle Scholar
Lin, Z., Yang, J., Li, X., Wu, Y., Wei, W., Liu, J., Chen, J., and Yang, J.: Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv. Funct. Mater. 28(1), 1704112 (2018).CrossRefGoogle Scholar
Chen, J., Zhu, G., Yang, J., Jing, Q., Bai, P., Yang, W., Qi, X., Su, Y., and Wang, Z.L.: Personalized keystroke dynamics for self-powered human–machine interfacing. ACS Nano 9(1), 105116 (2015).CrossRefGoogle ScholarPubMed
Li, S., Fan, Y., Chen, H., Nie, J., Liang, Y., Tao, X., Zhang, J., Chen, X., Fu, E., and Wang, Z.: Manipulating the triboelectric surface charge density of polymers by low-energy Helium irradiation/implantation. Energy Environ. Sci. (2019).Google Scholar
Nie, J., Ren, Z., Xu, L., Lin, S., Zhan, F., Chen, X., and Wang, Z.L.: Probing contact-electrification-induced electron and ion transfers at a liquid–solid interface. Adv. Mater. 32(2), 1905696 (2020).CrossRefGoogle Scholar
Wang, J., Lo, J.C., Lee, S.R., Tao, M., Zou, H., and Yun, F.: A novel approach to characterize phosphor particles for the color tuning of WLEDs. IEEE Photonics Technol. Lett. 30(6), 513516 (2017).CrossRefGoogle Scholar