Skip to main content Accessibility help
×
Home

An ode to polyethylene

  • Svetlana V. Boriskina (a1)

Abstract

Polyethylene is one of the most produced materials in the world—is it a blessing or a curse? This article makes the case for the former by highlighting a range of emerging applications of polyethylene in energy and sustainability, including passive cooling of electronics and wearables, water treatment and harvesting, and even ocean cleanup from plastic waste debris.

Usually, when the word “polyethylene” is mentioned in the context of discussing sustainability issues, a good chance the message is that “the current level of environmental plastic pollution is unsustainable.” Polyethylene does indeed comprise a large volume of plastic waste, but only because it is used in so many different products, which eventually reach the end of their lifetime and end up on the landfills and in the ocean. There is, however, a good reason—actually, many good reasons—why polyethylene is one of the most produced materials in the world, and this review discusses various useful applications stemming from the unique material properties of polyethylene. Some of the emerging applications of polyethylene hold high promise for sustainable energy generation from renewable sources and for sustainable management of planetary energy and water resources. Light weight and corrosion resistance of polyethylene, combined with its unique infrared transparency and heat transfer properties, which can be engineered to span between the near-perfect insulation and metal-like conduction, are at the core of new technological applications of a not-so-old material.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An ode to polyethylene
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An ode to polyethylene
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An ode to polyethylene
      Available formats
      ×

Copyright

Corresponding author

a)Address all correspondence to Svetlana V. Boriskina at sborisk@mit.edu, http://sboriskina.mit.edu

References

Hide All
1.Geyer, R., Jambeck, J.R., and Law, K.L.: Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).
2.Trossarelli, L. and Brunella, V.P.: Polyethylene: Discovery and growth. In Proc. UHMWPE Meeting (University of Torino, Italy, 2003); pp. 118.
3.McMillan, F.M.: Fruitful innovation—1. The polyethylene discovery. In The Chain Straighteners (Palgrave Macmillan: London, U.K., 1979); pp. 5672.
4.Fawcett, E.W. and Gibson, R.O.: Improvements in or relating to the polymerisation of ethylene. Patent No. GB471590, 1937.
5.Ziegler, K., Breil, H., and Martin, H.: High molecular polyethylenes. Patent No. GB799392, 1957.
6.Ziegler, K., Heinz, B., Erhard, H., and Heinz, M.: High molecular polyethylenes. Patent No. DE973626, 1960.
7.Hogan, J.P. and Banks, R.L.: Polymers and production thereof. Patent No. US2825721, 1958.
8.White, J.R.: A process for producing bulky yarn-like formation of a molecularly oriented film strips of a synthetic, organic polymer. Patent No. DE1175385B, 1958.
9.Demirors, M.: The history of polyethylene. In 100+ Years of Plastics. Leo Baekeland and Beyond, ACS Symposium Series, Vol. 1080, Thomas, Strom E. and Rasmussen, S.C., eds. (American Chemical Society, Washington, DC, 2011); pp. 115145.
10.Krimm, S., Liangt, C.Y., and Sutherland, G.B.B.M.: Infrared spectra of high polymers. II. Polyethylene. J. Polym. Sci. XXVII, 241254 (1958).
11.Tong, J.K., Huang, X., Boriskina, S.V., Loomis, J., Xu, Y., and Chen, G.: Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2, 769778 (2015).
12.Balocco, C., Mercatelli, L., Azzali, N., Meucci, M., and Grazzini, G.: Experimental transmittance of polyethylene films in the solar and infrared wavelengths. Sol. Energy 165, 199205 (2018).
13.Hsu, P.-C., Song, A.Y., Catrysse, P.B., Liu, C., Peng, Y., Xie, J., Fan, S., and Cui, Y.: Radiative human body cooling by nanoporous polyethylene textile. Science 353, 10191023 (2016).
14.Betts, K.H., Parsons, R.R., and Brett, M.J.: Heat mirrors for greenhouses. Appl. Opt. 24, 2651 (1985).
15.Espí, E., Salmerón, A., Fontecha, A., García, Y., and Real, A.I.: Plastic films for agricultural applications. J. Plast. Film Sheeting 22, 85102 (2006).
16.Tiwari, G.N., Singh, H.N., and Tripathi, R.: Present status of solar distillation. Sol. Energy 75, 367373 (2003).
17.Dsilva Winfred Rufuss, D., Iniyan, S., Suganthi, L., and Davies, P.A.: Solar stills: A comprehensive review of designs, performance and material advances. Renewable Sustainable Energy Rev. 63, 464496 (2016).
18.Elimelech, M. and Phillip, W.A.: The future of seawater desalination: Energy, technology, and the environment. Science 333, 712717 (2011).
19.Ni, G., Zandavi, S.H., Javid, S.M., Boriskina, S.V., Cooper, T., and Chen, G.: A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 11, 15101519 (2011).
20.Phadatare, M.K. and Verma, S.K.: Effect of cover materials on heat and mass transfer coefficients in a plastic solar still. Desalin. Water Treat. 2, 254259 (2009).
21.Hay, H.R.: Plastic solar stills: Past, present, and future. Sol. Energy 14, 393404 (1973).
22.Chiavazzo, E., Morciano, M., Viglino, F., Fasano, M., and Asinari, P.: Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 1, 763772 (2018).
23.Ni, G., Li, G., Boriskina, S.V., Li, H., Yang, W., Zhang, T., and Chen, G.: Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 16126 (2016).
24.Cooper, T.A., Zandavi, S.H., Ni, G.W., Tsurimaki, Y., Huang, Y., Boriskina, S.V., and Chen, G.: Contactless steam generation and superheating under one sun illumination. Nat. Commun. 9, 5086 (2018).
25.Ni, G., Li, G., Boriskina, S.V., Li, H., Yang, W., Zhang, T., and Chen, G.: Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 17 (2016).
26.Okada, T. and Mandelkern, L.: Effect of morphology and degree of crystallinity on the infrared absorption spectra of linear polyethylene. J. Polym. Sci., Part A-2 5, 239262 (1967).
27.Eisenreich, N. and Rohe, T.: Infrared spectroscopy in analysis of plastics recycling. In Encyclopedia of Analytical Chemistry (John Wiley & Sons, Ltd., Chichester, U.K., 2006).
28.Inampudi, S., Cheng, J., Salary, M.M., and Mosallaei, H.: Unidirectional thermal radiation from a SiC metasurface. J. Opt. Soc. Am. B 35, 39 (2018).
29.Jones, A.C. and Raschke, M.B.: Thermal infrared near-field spectroscopy. Nano Lett. 12, 14751481 (2012).
30.Boriskina, S.V., Tong, J.K., Hsu, W.-C., Liao, B., Huang, Y., Chiloyan, V., and Chen, G.: Heat meets light on the nanoscale. Nanophotonics 5, 134160 (2016).
31.Bermel, P., Boriskina, S.V., Yu, Z., and Joulain, K.: Control of radiative processes for energy conversion and harvesting. Opt. Express 23, A1533A1540 (2015).
32.Hossain, M.M. and Gu, M.: Radiative cooling: Principles, progress, and potentials. Adv. Sci. 3, 1500360 (2016).
33.Sun, X., Sun, Y., Zhou, Z., Alam, M.A., and Bermel, P.: Radiative sky cooling: Fundamental physics, materials, structures, and applications. Nanophotonics 6, 9971015 (2017).
34.Li, W., Shi, Y., Chen, Z., and Fan, S.: Photonic thermal management of coloured objects. Nat. Commun. 9, 4240 (2018).
35.Hoyt, T., Arens, E., and Zhang, H.: Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings. Build. Environ. 88, 8996 (2015).
36.Strobach, E.M. and Boriskina, S.V.: Daylighting. Opt. Photonics News 29, 24 (2018).
37.Eriksson, T.S., Lushiku, E.M., and Granqvist, C.G.: Materials for radiative cooling to low temperature. Sol. Energy Mater. 11, 149161 (1984).
38.Gentle, A.R., Dybdal, K.L., and Smith, G.B.: Polymeric mesh for durable infra-red transparent convection shields: Applications in cool roofs and sky cooling. Sol. Energy Mater. Sol. Cells 115, 7985 (2013).
39.Smith, G., Gentle, A., Arnold, M., and Cortie, M.: Nanophotonics-enabled smart windows, buildings and wearables. Nanophotonics 5, 5573 (2016).
40.Granqvist, C.G., Hjortsberg, A., and Eriksson, T.S.: Radiative cooling to low temperatures with selectivity IR-emitting surfaces. Thin Solid Films 90, 187190 (1982).
41.Niklasson, G.A. and Eriksson, T.S.: Radiative cooling with pigmented polyethylene foils. In International Society for Optics and Photonics, Proceedings of SPIE, Vol. 1016, Granqvist, C.-G. and Lampert, C.M., eds. (International Society for Optics and Photonics, Hamburg, Germany, 1989); p. 89.
42.Eriksson, T.S. and Granqvist, C.G.: Radiative cooling computed for model atmospheres. Appl. Opt. 21, 43814388 (1982).
43.Granqvist, C.G.: Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films. J. Appl. Phys. 52, 4205 (1981).
44.Zhai, Y., Ma, Y., David, S.N., Zhao, D., Lou, R., Tan, G., Yang, R., and Yin, X.: Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 10621066 (2017).
45.Gentle, A.R. and Smith, G.B.: Radiative heat pumping from the Earth using surface phonon resonant nanoparticles. Nano Lett. 10, 373379 (2010).
46.Boriskina, S.V., Weinstein, L.A., Tong, J.K., Hsu, W.-C., and Chen, G.: Hybrid optical–thermal antennas for enhanced light focusing and local temperature control. ACS Photonics 3, 17141722 (2016).
47.Boriskina, S.V., Green, M.A., Catchpole, K., Yablonovitch, E., Beard, M.C., Okada, Y., Lany, S., Gershon, T., Zakutayev, A., Tahersima, M.H., Sorger, V.J., Naughton, M.J., Kempa, K., Dagenais, M., Yao, Y., Xu, L., Sheng, X., Bronstein, N.D., Rogers, J.A., Alivisatos, A.P., Nuzzo, R.G., Gordon, J.M., Wu, D.M., Wisser, M.D., Salleo, A., Dionne, J., Bermel, P., Greffet, J.-J., Celanovic, I., Soljacic, M., Manor, A., Rotschild, C., Raman, A., Zhu, L., Fan, S., and Chen, G.: Roadmap on optical energy conversion. J. Opt. 18, 073004 (2016).
48.Lozano, L.M., Hong, S., Huang, Y., Zandavi, H., El Aoud, Y.A., Tsurimaki, Y., Zhou, J., Xu, Y., Osgood, R.M., Chen, G., and Boriskina, S.V.: Optical engineering of polymer materials and composites for simultaneous color and thermal management. Opt. Mater. Express 9, 1990 (2019).
49.Guan, H., Sebben, M., and Bennett, J.: Radiative- and artificial-cooling enhanced dew collection in a coastal area of South Australia. Urban Water J. 11, 175184 (2014).
50.Nilsson, T.: Initial experiments on dew collection in Sweden and Tanzania. Sol. Energy Mater. Sol. Cells 40, 2332 (1996).
51.Beysens, D., Muselli, M., Milimouk, I., Ohayon, C., Berkowicz, S., Soyeux, E., Mileta, M., and Ortega, P.: Application of passive radiative cooling for dew condensation. Energy 31, 23032315 (2006).
52.Nilsson, T.M.J., Vargas, W.E., Niklasson, G.A., and Granqvist, C.G.: Condensation of water by radiative cooling. Renewable Energy 5, 310317 (1994).
53.Sharan, G.: Harvesting dew with radiation cooled condensers to supplement drinking water supply in semi-arid coastal northwest India. Int. J. Serv. Learn. Eng. Humanit. Eng. Soc. Entrep. 6, 130150 (2011).
54.Bhatia, B., Leroy, A., Shen, Y., Zhao, L., Gianello, M., Li, D., Gu, T., Hu, J., Soljačić, M., and Wang, E.N.: Passive directional sub-ambient daytime radiative cooling. Nat. Commun. 9, 5001 (2018).
55.Yang, A., Cai, L., Zhang, R., Wang, J., Hsu, P.-C., Wang, H., Zhou, G., Xu, J., and Cui, Y.: Thermal management in nanofiber-based face mask. Nano Lett. 17, 35063510 (2017).
56.Peng, Y., Chen, J., Song, A.Y., Catrysse, P.B., Hsu, P.-C., Cai, L., Liu, B., Zhu, Y., Zhou, G., Wu, D.S. et al.: Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105112 (2018).
57.Zandavi, S.H., Huang, Y., Ni, G., Pang, R., Osgood, R.M. III, Kamal, P., Jain, A., Chen, G., and Boriskina, S.V.: Polymer metamaterial fabrics for personal radiative thermal management. In Frontiers in Optics 2017 (OSA, Washington, D.C., 2017); p. FM4D.6.
58.Boriskina, S.V., Zandavi, H., Song, B., Huang, Y., and Chen, G.: Heat is the new light. Opt. Photonics News 28, 2633 (2017).
59.Chen, G., Tong, J.K., Boriskina, S.V., Huang, X., Loomis, J., and Xu, L.: Infrared transparent visible opaque fabrics. Patent No. US9951446, 2015.
60.Fukushima, Y., Murase, H., and Ohta, Y.: Dyneema®: Super fiber produced by the gel spinning of a flexible polymer. In High-Performance and Specialty Fibers, The Society of Fiber Science and Technology, Japan (Springer Japan, Tokyo, 2016); pp. 109132.
61.Simmelink, J.A.P.M., Mencke, J.J., Jacobs, M.J.N., and Marissen, R.: Process for making high-performance polyethylene multifilament yarn. Patent No. US9759525B2, March 2, 2009.
63.Ghaly, A., Ananthashankar, R., Alhattab, M., and Ramakrishnan, V.: Production, characterization and treatment of textile effluents: A critical review. J. Chem. Eng. Process Technol. 5, 118 (2014).
64.Bomgardner, M.: Greener Textile Dyeing. C&EN Glob. Enterp. 96, 2833 (2018).
65.Cai, L., Peng, Y., Xu, J., Zhou, C., Zhou, C., Wu, P., Lin, D., Fan, S., and Cui, Y.: Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3, 14781486 (2019).
66.Daniel, C., Longo, S., and Guerra, G.: High porosity polyethylene aerogels. Polyolefins J. 2, 4955 (2015).
67.Attia, Y.A.: Polyethylene aerogels and method of their production. Patent No. US9034934B1, May 30, 2012.
68.Shen, S., Henry, A., Tong, J., Zheng, R., and Chen, G.: Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5, 251255 (2010).
69.Loomis, J., Ghasemi, H., Huang, X., Thoppey, N., Wang, J., Tong, J.K., Xu, Y., Li, X., Lin, C.-T., and Chen, G.: Continuous fabrication platform for highly aligned polymer films. Technology 02, 189199 (2014).
70.Lin, Y., Patel, R., Cao, J., Tu, W., Zhang, H., Bilotti, E., Bastiaansen, C.W.M., and Peijs, T.: Glass-like transparent high strength polyethylene films by tuning drawing temperature. Polymer 171, 180191 (2019).
71.Lv, W., Sultana, S., Rohskopf, A., Kalaitzidou, K., and Henry, A.: Graphite-high density polyethylene laminated composites with high thermal conductivity made by filament winding. Express Polym. Lett. 12, 215226 (2018).
72.Xu, Y., Kraemer, D., Song, B., Jiang, Z., Zhou, J., Loomis, J., Wang, J., Li, M., Ghasemi, H., Huang, X., Li, X., and Chen, G.: Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 10, 1771 (2019).
73.Fujishiro, H., Ikebe, M., Kashima, T., and Yamanaka, A.: Drawing effect on thermal properties of high-strength polyethylene fibers. Jpn. J. Appl. Phys. 37, 19941995 (1998).
74.Wang, X., Ho, V., Segalman, R.A., and Cahill, D.G.: Thermal conductivity of high-modulus polymer fibers. Macromolecules 46, 49374943 (2013).
75.Takao, T., Yuhara, T., Sakuma, R., Goto, T., and Yamanaka, A.: Evaluating cooling performance of high-thermal-conduction composite in conduction-cooled superconducting coils. IEEE Trans. Appl. Supercond. 20, 21262129 (2010).
76.Takao, T., Kawasaki, A., Yamaguchi, M., Yamamoto, H., Niiro, A., Nakamura, K., and Yamanaka, A.: Investigation of cooling effects on conduction cooled HTS tape due to high thermal conduction plastics. IEEE Trans. Appl. Supercond. 13, 17761779 (2003).
77.Gosumbonggot, J. and Fujita, G.: Global maximum power point tracking under shading condition and hotspot detection algorithms for photovoltaic systems. Energies 12, 882 (2019).
78.Moretón, R., Lorenzo, E., and Narvarte, L.: Experimental observations on hot-spots and derived acceptance/rejection criteria. Sol. Energy 118, 2840 (2015).
79.Romano, D., Tops, N., Bos, J., and Rastogi, S.: Correlation between thermal and mechanical response of nascent semicrystalline UHMWPEs. Macromolecules 50, 20332042 (2017).
80.Gerrits, N.S.J.A., Young, R.J., and Lemstra, P.J.: Tensile properties of biaxially drawn polyethylene. Polymer 31, 231236 (1990).
81.Restrepo-Flórez, J.-M., Bassi, A., and Thompson, M.R.: Microbial degradation and deterioration of polyethylene—A review. Int. Biodeterior. Biodegrad. 88, 8390 (2014).
82.Buxadera-Palomero, J., Canal, C., Torrent-Camarero, S., Garrido, B., Javier Gil, F., and Rodríguez, D.: Antifouling coatings for dental implants: Polyethylene glycol-like coatings on titanium by plasma polymerization. Biointerphases 10, 029505 (2015).
83.Frodel, J.L. and Lee, S.: The use of high-density polyethylene implants in facial deformities. Arch. Otolaryngol., Head Neck Surg. 124, 1219 (1998).
84.Ridwan-Pramana, A., Wolff, J., Raziei, A., Ashton-James, C.E., and Forouzanfar, T.: Porous polyethylene implants in facial reconstruction: Outcome and complications. J. Cranio-Maxillofacial Surg. 43, 13301334 (2015).
85.Kyaw, B.M., Champakalakshmi, R., Sakharkar, M.K., Lim, C.S., and Sakharkar, K.R.: Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J. Microbiol. 52, 411419 (2012).
86.Muhonja, C.N., Makonde, H., Magoma, G., and Imbuga, M.: Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS One 13, e0198446 (2018).
87.Bombelli, P., Howe, C.J., and Bertocchini, F.: Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr. Biol. 27, R292R293 (2017).
88.Sivan, A., Szanto, M., and Pavlov, V.: Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl. Microbiol. Biotechnol. 72, 346352 (2006).
89.Tokiwa, Y., Calabia, B.P., Ugwu, C.U., and Aiba, S.: Biodegradability of plastics. Int. J. Mol. Sci. 10, 37223742 (2009).
90.Gurunathan, T., Mohanty, S., and Nayak, S.K.: A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites, Part A 77, 125 (2015).
91.Zhang, Z., Gora-Marek, K., Watson, J.S., Tian, J., Ryder, M.R., Tarach, K.A., López-Pérez, L., Martínez-Triguero, J., and Melián-Cabrera, I.: Recovering waste plastics using shape-selective nano-scale reactors as catalysts. Nat. Sustain. 2, 3942 (2019).
92.Boriskina, S.V., Raza, A., Zhang, T., Wang, P., Zhou, L., and Zhu, J.: Nanomaterials for the water-energy nexus. MRS Bull. 44, 5966 (2019).
93.Borrelle, S.B., Rochman, C.M., Liboiron, M., Bond, A.L., Lusher, A., Bradshaw, H., and Provencher, J.F.: Opinion: Why we need an international agreement on marine plastic pollution. Proc. Natl. Acad. Sci. U. S. A. 114, 99949997 (2017).

Keywords

An ode to polyethylene

  • Svetlana V. Boriskina (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed