Skip to main content Accessibility help
×
Home

Zn-enriched PtZn nanoparticle electrocatalysts synthesized by solution combustion for ethanol oxidation reaction in an alkaline medium

  • Md. Abdul Matin (a1), Anand Kumar (a1), Mohammed Ali H. Saleh Saad (a1), Mohammed J. Al-Marri (a1) and Sergey Suslov (a2)...

Abstract

This work focuses on the syntheses of Zn-enriched PtZn nanoparticle electrocatalysts by solution combustion for ethanol oxidation reaction (EOR). Analytical techniques of x-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy, TEM/scanning TEM-energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy are used for the characterization of electrocatalysts. Cyclic voltammetry and chronoamperometry are applied for the electrocatalysis of C2H5OH and stability test in an alkaline medium, respectively. Electrochemical data show that PtZn/C has improved electrocatalytic activity by ~2.3 times compared with commercial Pt/C, in addition to having earlier onset potential and better stability for EOR. The variation of fuel amount in the synthesis has affected crystallite sizes, electronic, and electrochemical properties in electrocatalysts.

Copyright

Corresponding author

Address all correspondence to Anand Kumar at akumar@qu.edu.qa

References

Hide All
1.Porter, N.S., Wu, H., Quan, Z., and Fang, J.: Shape-control and electrochemical activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 8, 18671877 (2003).
2.Ogden, M.: Sustainable energy supply. In Handbook of Fuel Cells: Fundamentals Technology and Applications, edited by Vielstich, W., Lamn, A., and Gasteiger, H., pp. 1–8 (John Willey & Sons Ltd., 3, Chichester, 2003).
3.Rizo, R., Sebastian, D., Lazaro, M.J., and Pastor, E.: On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl. Catal. B Environ. 200, 246254 (2017).
4.Zhong, C., Luo, J., Fang, B., Wanjala, B.N., Njoki, P.N., Loukrakpam, R., and Yin, J.: Nanostructured catalysts in fuel cells. Nanotechnology 21, 062001062020 (2010).
5.Yang, G., Zhou, Y., Pan, H., Zhou, C., Fu, S., Wai, C.M., Du, D., Zhu, J., and Lin, Y.: Ultrasonic-assisted synthesis of Pd-Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium. Ultrason. Sonochem. 28, 192198 (2016).
6.Shen, S.Y., Zhao, T.S., Xu, J.B., and Li, Y.S.: Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J. Power Sources 195, 10011006 (2010).
7.Zai, C., Hu, J., Sun, M., and Zhu, M.: Two dimensional visible-light-active Pt-BioI photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media. Appl. Surf. Sci. 430, 578584 (2017).
8.Zhang, K., Xu, H., Yan, B., Wang, J., Gu, Z., and Du, Y.: Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation. Appl. Surf. Sci. 425, 7782 (2017).
9.Matin, M.A., Lee, E., Kim, H., Yoon, W.-Y., and Kwon, Y.-U.: Rational syntheses of core-shell Fe@(PtRu) nanoparticle electrocatalysts for the methanol oxidation reaction with complete suppression of CO-poisoning and highly enhanced activity. J. Mater. Chem. A 3, 1715417164 (2015).
10.Mukherjee, P., Bagchi, J., Dutta, S., and Battacharya, S.K.: The nickel supported platinum catalyst for anodic oxidation of ethanol in alkaline medium. Appl. Catal. A Gen. 506, 220227 (2015).
11.Switzer, E.E., Olson, T.S., Datye, A.K., Atanassov, P., Hibbs, M.R., and Cornelius, C.J.: Templated Pt-Sn electrocatalysts for ethanol, methanol and CO oxidation in alkaline media. Electrochim. Acta 54, 989995 (2009).
12.Wang, X., Altmann, L., Stover, J., Zielasek, V., Baumer, M., Katharina, A.-S., Borchert, H., Parisi, J., and Joanna, K.-O.: Pt/Zn intermetallic, core/shell and alloy nanoparticles: colloidal synthesis and structural control. Chem. Mater. 25, 14001407 (2013).
13.Maya-Cornejo, J., Carrerra-Cerritos, R., Sebastian, D., Ledesma-Garcia, L., Arriaga, L.G., Arico, A.S., and Baglio, V.: PtCu catalyst for the electro-oxidation of ethanol in an alkaline direct alcohol fuel cell. Int. J. Hydrog. Energy 42, 2791927928 (2017).
14.Jin, C., Ma, X., Zhang, J., Huo, O., and Dong, R.: Surface modification of Pt/C catalyst with Ag for electrooxidation of ethanol. Electrochim. Acta 146, 533537 (2014).
15.Gregoire, J.M., Kostylev, M., Tague, M.E., Mutolo, P.F., van Dover, R.B., DiSalvo, F.J., and Abruna, H.D.: High-throughput evaluation of dealloyed Pt-Zn composition-spread thin film for methanol-oxidation catalysis. J. Electrochem. Soc. 156, B160B166 (2009).
16.Zhu, J., Zheng, X., Wang, J., Wu, Z., Han, L., Lin, R., Xin, H.L., and Wang, D.: Structurally ordered Pt-Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation. J. Mater. Chem. A 3, 2212922135 (2015).
17.Miura, A., Wang, H., Leonard, B.M., Abruna, H.D., and DiSalvo, F.J.: Synthesis of intermetallic PtZn nanoparticles by reaction of Pt nanoparticles with Zn vapor and their application as fuel cell catalysts. Chem. Mater. 21, 26612667 (2009).
18.Qi, Z., Xiao, C., Liu, C., Goh, T. W., Zhou, L., Maligal-Ganesh, R., Pei, Y., Li, X., Curtiss, L. A., and Huang, W.: Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J. Am. Chem. Soc. 139, 47624768 (2017).
19.Kang, Y., Pyo, J.B., Ye, X., Gordon, T.R., and Murray, C.B.: Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals. ACS Nano 6, 56425647 (2012).
20.Sasaki, H. and Maeda, M.: Enhanced dissolution of Pt from Pt-Zn intermetallic compounds and underpotential dissolution from Zn-rich alloys. J. Phys. Chem. C 117, 1845718463 (2013).
21.Chen, Q., Zhang, J., Jia, Y., Jiang, Z., Xie, Z., and Zheng, L.: Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances. Nanoscale 6, 70197024 (2014).
22.Moser, Z.: The Pt-Zn (platinum-zinc) system. J. Phase Equilib. 12, 439443 (1991).
23.Kottcamp, E.H. and Langer, E.L.: Binary alloy phase diagrams. In ASM Handbook: Alloy Phase Diagrams, edited by Okamoto, H., Schlesinger, M.E., and Mueller, E.M., pp. 79624 (3, 1992).
24.Nowotny, H., Bauer, E., Stempfl, A., and Bittner, H.: Platinum-zinc alloy phase diagram [based on 1952 H. Nowotny]. Monatsh. Chem. 83, 221236 (1952).
25.Hansen, M., Anderko, K., and Saizberg, H.W.: Constitution of binary alloys. J. Electrochem. Soc. 105, 260C261C (1958).
26.Chen, Z.-X., Neyman, K.M., Gordienko, A.B., and Rosch, N.: Surface structure and stability of PdZn and PtZn alloys: density-functional slab model studies. Phys. Rev. B 68, 075417-8 (2003).
27.Hsieh, C.-T., Hung, W.-M., Chen, W.-Y., and Lin, J.-Y.: Microwave-assisted polyol synthesis of Pt-Zn electrocatalysts on carbon nanotube electrodes for methanol oxidation. Int. J. Hydrog. Energy 36, 27652772 (2011).
28.Ito, S.-I., Suwa, Y., Kondo, S., Kameoka, S., Tomishige, K., and Kunimori, K.: Steam reforming of methanol over Pt-Zn alloy catalyst supported on carbon black. Catal. Commun. 4, 499503 (2003).
29.Pech-Rodriguez, W.J., Gonzalez-Quijano, D., Vargas-Gutierrez, G., Morais, C., Napporn, T.W., and Rodriguez-Varela, F.J.: Electrochemical and in situ FTIR study of the ethanol oxidation reaction on PtMo/C nanomaterials in alkaline media. Appl. Catal. B Environ. 203, 654662 (2017).
30.Matin, M.A., Kumar, A., Bhosale, R.R., Saad, M.A.H.S., Almomani, F.A., and Al-Marri, M.J.: PdZn nanoparticle electrocatalysts synthesized by solution combustion for methanol oxidation reaction in an alkaline medium. RSC Adv. 7, 4270942717 (2017).
31.Matin, M.A., Jang, J.-H., and Kwon, Y.-U.: PdM nanoparticles (M = Ni, Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions. J. Power Sources 262, 356–263 (2014).
32.Qiao, Y. and Li, C.M.: Nanostructured catalysts in fuel cells. J. Mater. Chem. 21, 40274036 (2011).
33.Merzhanov, A.G.: History and recent developments in SHS. Ceram. Int. 21, 371379 (1995).
34.Kingsley, J. and Patil, K.C.: A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater. Lett. 6, 427432 (1988).
35.Cross, A., Kumar, A., Wolf, E.E., and Mukasyan, A.S.: Combustion synthesis of a nickel supported catalyst: effect of metal distribution on the activity during ethanol decomposition. Ind. Eng. Chem. Res. 51, 1200412008 (2012).
36.Kumar, A., Mukasyan, A.S., and Wolf, E.E.: Combustion synthesis of Ni, Fe and Cu multi-component catalysts for hydrogen production from ethanol reforming. Appl. Catal. A Gen. 401, 2028 (2011).
37.Aruna, S.T. and Mukasyan, A.S.: Combustion synthesis and nanomaterials. Curr. Opin. Sold State Mater. Sci. 12, 4450 (2008).
38.Lenka, R.K., Mahata, T., Sinha, P.K., and Tyagi, A.K.: Combustion synthesis of gadolina-doped ceria using glycine and urea fuels. J. Alloys Compd. 466, 326329 (2008).
39.Gonzalez-Cortes, S.L. and Imbert, F.E.: Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl. Catal. A Gen. 452, 117131 (2013).
40.Li, F.-T., Ran, J., Jaroniec, M., and Qiao, S.Z.: Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale 7, 1759017610 (2015).
41.Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V.: Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 1449314586 (2016).
42.Zak, A.K., Majid, W.H.A., Abrishami, M.E., and Yousefi, R.: X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251256 (2011).
43.Kim, Y.-T., Matin, M.A., and Kwon, Y.-U.: Graphene as electronic structure modifier of nanostructured Pt film for enhanced methanol oxidation reaction electrocatalysis. Carbon N. Y. 66, 691698 (2014).
44.Biesinger, M.C., Lau, L.W.M., Gerson, A.R., and Smart, R.St.C.: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, Cu and Zn. Appl. Surf. Sci. 257, 887898 (2010).
45.Hammer, B. and Norskov, J.K.: Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 45, 71129 (2000).
46.Kibler, L.A., El-Aziz, A.M., Hoyer, R., and Kolb, D.M.: Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem. Int. Ed. 44, 20802084 (2005).
47.Zhang, Z., Ge, J., Ma, L., Liao, J., Lu, T., and Xing, W.: Highly active carbon-supported PdSn catalysts for formic acid electrooxidation. Fuel Cells 9, 114120 (2009).
48.Zhang, L., Wan, L., Ma, Y., Chen, Y., Zhou, Y., Tang, Y., and Lu, T.: Crystalline palladium-cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Appl. Catal. B Environ. 138–139, 229235 (2013).
49.Wang, J.X., Markovic, N.M., and Adzic, R.R.: Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J. Phys. Chem. B 108, 41274133 (2004).
50.Wang, J.X., Zhang, J.L., and Adzic, R.R.: Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media. J. Phys. Chem. A 111, 1270212710 (2007).
51.Igarashi, H., Fujino, T., Zhu, Y., Uchida, H., and Watanabe, M.: CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys. Chem. Chem. Phys. 3, 306314 (2001).
52.Feng, Y., Bin, D., Yan, B., Du, Y., Majima, T., and Zhou, W.: Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation. J. Colloid Interface Sci. 493, 190197 (2017).
53.Chen, X., Cai, Z., Chen, X., and Oyama, M.: Green synthesis of graphene-PtPd alloy nanoparticles with high electrocatalytic performance for ethanol oxidation. J. Mater. Chem. A 2, 315320 (2014).
Type Description Title
WORD
Supplementary materials

Matin et al. supplementary material
Tables S1-S2 and Figures S1-S3

 Word (4.5 MB)
4.5 MB

Zn-enriched PtZn nanoparticle electrocatalysts synthesized by solution combustion for ethanol oxidation reaction in an alkaline medium

  • Md. Abdul Matin (a1), Anand Kumar (a1), Mohammed Ali H. Saleh Saad (a1), Mohammed J. Al-Marri (a1) and Sergey Suslov (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.