Skip to main content Accessibility help

X-ray spectroscopies studies of the 3d transition metal oxides and applications of photocatalysis

  • Yifan Ye (a1), Mukes Kapilashrami (a1), Cheng-Hao Chuang (a2), Yi-sheng Liu (a1), Per-Anders Glans (a1) and Jinghua Guo (a1) (a3)...


Recent advances in synchrotron based x-ray spectroscopy enable materials scientists to emanate fingerprints on important materials properties, e.g., electronic, optical, structural, and magnetic properties, in real-time and under nearly real-world conditions. This characterization in combination with optimized materials synthesis routes and tailored morphological properties could contribute greatly to the advances in solid-state electronics and renewable energy technologies. In connection to this, such perspective reflects the current materials research in the space of emerging energy technologies, namely photocatalysis, with a focus on transition metal oxides, mainly on the Fe2O3- and TiO2-based materials.


Corresponding author

Address all correspondence to Jinghua Guo at


Hide All
† These authors contributed equally to this paper.



Hide All
1. Kapilashrami, M., Zhang, Y., Liu, Y.-S., Hagfeldt, A., and Guo, J.: Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 114, 9662 (2014).
2. Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
3. Maeda, K. and Domen, K.: New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111, 7851 (2007).
4. Himpsel, F.J., Cook, P.L., de la Torre, G., Garcia-Lastra, J.M., Gonzalez-Moreno, R., Guo, J.H., Hamers, R.J., Kronawitter, C.X., Johnson, P.S., Ortega, J.E., Pickup, D., Ragoussi, M.E., Rogero, C., Rubio, A., Ruther, R.E., Vayssieres, L., Yang, W., and Zegkinoglou, I.: Design of solar cell materials via soft X-ray spectroscopy. J. Electron Spectrosc. Relat. Phenom. 190(Part A), 2 (2013).
5. Linsebigler, A.L., Lu, G., and Yates, J.T.: Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).
6. Jing, D., Guo, L., Liang, Z., Zhang, X., Liu, H., Li, M., Shen, S., Liu, G., Hu, X., and Zhang, X.: Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Int. J. Hydrog. Energy 35, 7087 (2010).
7. Greiner, M.T., Helander, M.G., Tang, W.-M., Wang, Z.-B., Qiu, J., and Lu, Z.-H.: Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 11, 76 (2012).
8. Xia, X., Zeng, Z., Li, X., Zhang, Y., Tu, J., Fan, N.C., Zhang, H., and Fan, H.J.: Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage. Nanoscale 5, 6040 (2013).
9. Kapilashrami, M., Kronawitter, C.X., Torndahl, T., Lindahl, J., Hultqvist, A., Wang, W.-C., Chang, C.-L., Mao, S.S., and Guo, J.: Soft X-ray characterization of Zn1−xSnxOy electronic structure for thin film photovoltaics. Phys. Chem. Chem. Phys. 14, 10154 (2012).
10. Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).
11. Park, Y., McDonald, K.J., and Choi, K.-S.: Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42, 2321 (2013).
12. Kim, T.W. and Choi, K.-S.: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990 (2014).
13. Vayssieres, L.: On the effect of nanoparticle size on water-oxide interfacial chemistry. J. Phys. Chem. C 113, 4733 (2009).
14. Liu, C., Dasgupta, N.P., and Yang, P.: Semiconductor nanowires for artificial photosynthesis. Chem. Mater. 26, 415 (2014).
15. Yahya, A. and Fan, Z.Y.: A TiO2 nanostructure transformation: from ordered nanotubes to nanoparticles. Nanotechnology 20, 405610 (2009).
16. Kapilashrami, M., Liu, Y.S., Glans, P.A., and Guo, J.: Soft X-Ray Spectroscopy and Electronic Structure of 3d Transition Metal Compounds in Artificial Photosynthesis Materials (Springer International Publishing, Cham, Switzerland, 2015), p. 269.
17. Guo, J.: Synchrotron radiation, soft-X-ray spectroscopy and nanomaterials. Int. J. Nanotechnol. 1, 193 (2004).
18. Guo, J.H., Butorin, S.M., Wassdahl, N., Skytt, P., Nordgren, J., and Ma, Y.: Electronic structure of La2−xSrxCuO4 studied by soft-x-ray-fluorescence spectroscopy with tunable excitation. Phys. Rev. B 49, 1376 (1994).
19. Dong, C.L., Persson, C., Vayssieres, L., Augustsson, A., Schmitt, T., Mattesini, M., Ahuja, R., Chang, C.L., and Guo, J.H.: Electronic structure of nanostructured ZnO from x-ray absorption and emission spectroscopy and the local density approximation. Phys. Rev. B 70, 195325 (2004).
20. Guo, J.H., Butorin, S.M., Wassdahl, N., Nordgren, J., Berastegut, P., and Johansson, L.G.: Electronic structure of YBa2Cu3Ox and YBa2Cu4O8 studied by soft-x-ray absorption and emission spectroscopies. Phys. Rev. B 61, 9140 (2000).
21. Ye, Y., Kawase, A., Song, M.-K., Feng, B., Liu, Y.-S., Marcus, M., Feng, J., Cairns, E., Guo, J., and Zhu, J.: X-ray absorption spectroscopy characterization of a Li/S cell. Nanomaterials 6, 14 (2016).
22. Harada, Y., Kinugasa, T., Eguchi, R., Matsubara, M., Kotani, A., Watanabe, M., Yagishita, A., and Shin, S.: Polarization dependence of soft-x-ray Raman scattering at the L edge of TiO2 . Phys. Rev. B 61, 12854 (2000).
23. Li, J., Wang, Z., Zhao, A., Wang, J., Song, Y., and Sham, T.-K.: Nanoscale clarification of the electronic structure and optical properties of TiO2 nanowire with an impurity phase upon sodium intercalation. J. Phys. Chem. C 119, 17848 (2015).
24. Kronawitter, C.X., Bakke, J.R., Wheeler, D.A., Wang, W.-C., Chang, C., Antoun, B.R., Zhang, J.Z., Guo, J., Bent, S.F., Mao, S.S., and Vayssieres, L.: Electron enrichment in 3d transition metal oxide hetero-nanostructures. Nano Lett. 11, 3855 (2011).
25. Guo, J., Glans, P.-A., Liu, Y.-S., and Chang, C.: Electronic structure study of nanostructured transition metal oxides using soft x-ray spectroscopy. In On Solar Hydrogen & Nanotechnology, edited by Vayssieres, L. (John Wiley & Sons, Ltd, Chichester, UK, 2010), p. 123.
26. Krüger, P.: Multichannel multiple scattering calculation of L 2,3-edge spectra of TiO2 and SrTiO3: importance of multiplet coupling and band structure. Phys. Rev. B 81, 125121 (2010).
27. Glawion, S., Heidler, J., Haverkort, M.W., Duda, L.C., Schmitt, T., Strocov, V.N., Monney, C., Zhou, K.J., Ruff, A., Sing, M., and Claessen, R.: Two-spinon and orbital excitations of the spin-Peierls system TiOCl. Phys. Rev. Lett. 107, 107402 (2011).
28. Augustsson, A., Henningsson, A., Butorin, S.M., Siegbahn, H., Nordgren, J., and Guo, J.-H.: Lithium ion insertion in nanoporous anatase TiO2 studied with RIXS. J. Chem. Phys. 119, 3983 (2003).
29. Higuchi, T., Tsukamoto, T., Watanabe, M., Grush, M.M., Callcott, T.A., Perera, R.C., Ederer, D.L., Tokura, Y., Harada, Y., Tezuka, Y., and Shin, S.: Crystal-field splitting and the on-site Coulomb energy of LaxSr1−xTiO3 from resonant soft-x-ray emission spectroscopy. Phys. Rev. B 60, 7711 (1999).
30. Chen, C.L., Dong, C.L., Asokan, K., Chen, J.L., Liu, Y.S., Guo, J.H., Yang, W.L., Chen, Y.Y., Hsu, F.C., Chang, C.L., and Wu, M.K.: Role of 3d electrons in the rapid suppression of superconductivity in the dilute V doped spinel superconductor LiTi2O4 . Supercond. Sci. Technol. 24, 115007 (2011).
31. Ni, M., Leung, M.K.H., Leung, D.Y.C., and Sumathy, K.: A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renew. Sustain. Energy Rev. 11, 401 (2007).
32. De Angelis, F., Di Valentin, C., Fantacci, S., Vittadini, A., and Selloni, A.: Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem. Rev. 114, 9708 (2014).
33. Takagahara, T. and Takeda, K.: Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 46, 15578 (1992).
34. Kim, T.-Y., Park, N.-M., Kim, K.-H., Sung, G.Y., Ok, Y.-W., Seong, T.-Y., and Choi, C.-J.: Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl. Phys. Lett. 85, 5355 (2004).
35. Raty, J.-Y., Galli, G., Bostedt, C., van Buuren, T.W., and Terminello, L.J.: Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. Phys. Rev. Lett. 90, 037401 (2003).
36. Dong, C.-L., Gou, J., Chen, Y.-Y., and Chang, C.-L.: Soft-x-ray spectroscopy probes nanomaterial-based devices. SPIE Newsroom (2007). (accessed August 15, 2007).
37. Cooper, J.K., Gul, S., Toma, F.M., Chen, L., Liu, Y.-S., Guo, J., Ager, J.W., Yano, J., and Sharp, I.D.: Indirect bandgap and optical properties of monoclinic bismuth vanadate. J. Phys. Chem. C 119, 2969 (2015).
38. Ma, Y., Wassdahl, N., Skytt, P., Guo, J., Nordgren, J., Johnson, P.D., Rubensson, J.E., Boske, T., Eberhardt, W., and Kevan, S.D.: Soft-x-ray resonant inelastic scattering at the C K edge of diamond. Phys. Rev. Lett. 69, 2598 (1992).
39. Eich, D., Fuchs, O., Groh, U., Weinhardt, L., Fink, R., Umbach, E., Heske, C., Fleszar, A., Hanke, W., Gross, E.K.U., Bostedt, C., Buuren, T.V., Franco, N., Terminello, L.J., Keim, M., Reuscher, G., Lugauer, H., and Waag, A.: Resonant inelastic soft x-ray scattering of Be chalcogenides. Phys. Rev. B 73, 115212 (2006).
40. Gilbert, B., Frandsen, C., Maxey, E.R., and Sherman, D.M.: Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy. Phys. Rev. B 79, 035108 (2009).
41. Jovic, V., Laverock, J., Rettie, A.J.E., Zhou, J.S., Mullins, C.B., Singh, V.R., Lamoureux, B., Wilson, D., Su, T.Y., Jovic, B., Bluhm, H., Sohnel, T., and Smith, K.E.: Soft X-ray spectroscopic studies of the electronic structure of M:BiVO4 (M = Mo, W) single crystals. J. Mater. Chem. A 3, 23743 (2015).
42. Vayssieres, L., Sathe, C., Butorin, S.M., Shuh, D.K., Nordgren, J., and Guo, J.: One-dimensional quantum-confinement effect in α-Fe2O3 ultrafine nanorod arrays. Adv. Mater. 17, 2320 (2005).
43. Duda, L.C., Nordgren, J., Dräger, G., Bocharov, S., and Kirchner, T.: Polarized resonant inelastic X-ray scattering from single-crystal transition metal oxides. J. Electron Spectrosc. Relat. Phenom. 110–111, 275 (2000).
44. Skinner, H.W.B., Bullen, T.G., and Johnston, J.E.: CXIX. Notes on soft X-ray spectra, particularly of the Fe group elements. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 1070 (1954).
45. Akl, A.A.: Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis. Appl. Surf. Sci. 233, 307 (2004).
46. Vayssieres, L., Persson, C., and Guo, J.-H.: Size effect on the conduction band orbital character of anatase TiO2 nanocrystals. Appl. Phys. Lett. 99, 183101 (2011).
47. Li, J., Sham, T.-K., Ye, Y., Zhu, J., and Guo, J.: Structural and optical interplay of palladium-modified TiO2 nanoheterostructure. J. Phys. Chem. C 119, 2222 (2015).
48. Ray, S.C., Low, Y., Tsai, H.M., Pao, C.W., Chiou, J.W., Yang, S.C., Chien, F.Z., Pong, W.F., Tsai, M.-H., Lin, K.F., Cheng, H.M., Hsieh, W.F., and Lee, J.F.: Size dependence of the electronic structures and electron–phonon coupling in ZnO quantum dots. Appl. Phys. Lett. 91, 262101 (2007).
49. Chiou, J.W., Jan, J.C., Tsai, H.M., Bao, C.W., Pong, W.F., Tsai, M.-H., Hong, I.-H., Klauser, R., Lee, J.F., Wu, J.J., and Liu, S.C.: Electronic structure of ZnO nanorods studied by angle-dependent x-ray absorption spectroscopy and scanning photoelectron microscopy. Appl. Phys. Lett. 84, 3462 (2004).
50. Guo, J.H., Vayssieres, L., Persson, C., Ahuja, R., Johansson, B., and Nordgren, J.: Polarization-dependent soft-x-ray absorption of highly oriented ZnO microrod arrays. J. Phys.: Condens. Matter 14, 6969 (2002).
51. Ra, W., Nakayama, M., Cho, W., Wakihara, M., and Uchimoto, Y.: Electronic and local structural changes in Li2+xTi3O7 ramsdellite compounds upon electrochemical Li-ion insertion reactions by X-ray absorption spectroscopy. Phys. Chem. Chem. Phys. 8, 882 (2006).
52. Chen, C.L., Dong, C.-L., Chen, C.-H., Wu, J.-W., Lu, Y.-R., Lin, C.-J., Hsuan Liou, S. Y., Tseng, C.-M., Kumar, K., Wei, D.-H., Guo, J., Chou, W.-C., and Wu, M.-K.: Electronic properties of free-standing TiO2 nanotube arrays fabricated by electrochemical anodization. Phys. Chem. Chem. Phys. 17, 22064 (2015).
53. Choi, W., Termin, A., and Hoffmann, M.R.: The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. B 98, 13669 (1994).
54. Valentin, C.D., Pacchioni, G., Onishi, H., and Kudo, A.: Cr/Sb co-doped TiO2 from first principles calculations. Chem. Phys. Lett. 469, 166 (2009).
55. Long, R. and English, N.J.: First-principles calculation of synergistic (N, P)-codoping effects on the visible-light photocatalytic activity of anatase TiO2 . J. Phys. Chem. C 114, 11984 (2010).
56. Han, X. and Shao, G.: Electronic properties of rutile TiO2 with nonmetal dopants from first principles. J. Phys. Chem. C 116, 8274 (2011).
57. Singh, D., Singh, N., Sharma, S.D., Kant, C., Sharma, C.P., Pandey, R.R., and Saini, K.K.: Bandgap modification of TiO2 sol–gel films by Fe and Ni doping. J. Sol–Gel Sci. Technol. 58, 269 (2011).
58. Wang, Y., Zhang, R., Li, J., Li, L., and Lin, S.: First-principles study on transition metal-doped anatase TiO2 . Nanoscale Res. Lett. 9, 1 (2014).
59. Matthey, D., Wang, J.G., Wendt, S., Matthiesen, J., Schaub, R., Lægsgaard, E., Hammer, B., and Besenbacher, F.: Enhanced bonding of gold nanoparticles on oxidized TiO2(110). Science 315, 1692 (2007).
60. Hansen, J.Ø., Lira, E., Galliker, P., Wang, J.-G., Sprunger, P.T., Li, Z., Lægsgaard, E., Wendt, S., Hammer, B., and Besenbacher, F.: Enhanced bonding of silver nanoparticles on oxidized TiO2(110). J. Phys. Chem. C 114, 16964 (2010).
61. Gray, T.J., McCain, C.C., and Masse, N.G.: Defect structure and catalysis in the TiO2 system (semi-conducting and magnetic properties). J. Phys. Chem. 63, 472 (1959).
62. Ganduglia-Pirovano, M.V., Hofmann, A., and Sauer, J.: Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf. Sci. Rep. 62, 219 (2007).
63. Chernyshova, I.V., Hochella, M.F. Jr., and Madden, A.S.: Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys. Chem. Chem. Phys. 9, 1736 (2007).
64. Aiura, Y., Nishihara, Y., Haruyama, Y., Komeda, T., Kodaira, S., Sakisaka, Y., Maruyama, T., and Kato, H.: Effects of surface oxygen vacancies on electronic states of TiO2(110), TiO2(001) and SrTiO3(001) surfaces. Phys. B: Condens. Matter 194, 1215 (1994).
65. Henrich, V.E. and Kurtz, R.L.: Surface electronic structure of TiO2: atomic geometry, ligand coordination, and the effect of adsorbed hydrogen. Phys. Rev. B 23, 6280 (1981).
66. Mattioli, G., Alippi, P., Filippone, F., Caminiti, R., and Amore Bonapasta, A.: Deep versus shallow behavior of intrinsic defects in rutile and anatase TiO2 polymorphs. J. Phys. Chem. C 114, 21694 (2010).
67. Yan, W., Sun, Z., Pan, Z., Liu, Q., Yao, T., Wu, Z., Song, C., Zeng, F., Xie, Y., Hu, T., and Wei, S.: Oxygen vacancy effect on room-temperature ferromagnetism of rutile Co:TiO2 thin films. Appl. Phys. Lett. 94, 042508 (2009).
68. Wang, W., Ye, Y., Feng, J., Chi, M., Guo, J., and Yin, Y.: Enhanced photoreversible color switching of redox dyes catalyzed by barium-doped TiO2 nanocrystals. Angew. Chem. Int. Ed. 54, 1321 (2015).
69. Rusydi, A., Dhar, S., Roy Barman, A., Ariando, D.-C. Qi, Motapothula, M., Yi, J.B., Santoso, I., Feng, Y.P., Yang, K., Dai, Y., Yakovlev, N.L., Ding, J., Wee, A.T.S., Neuber, G., Breese, M.B.H., Ruebhausen, M., Hilgenkamp, H., and Venkatesan, T.: Cationic-vacancy-induced room-temperature ferromagnetism in transparent, conducting anatase Ti1−xTaxO2 (x~0.05) thin films. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 370, 4927 (2012).
70. Osorio-Guillén, J., Lany, S., and Zunger, A.: Atomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in anatase TiO2 . Phys. Rev. Lett. 100, 036601 (2008).
71. Chen, X. and Burda, C.: The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130, 5018 (2008).
72. Braun, A., Akurati, K.K., Fortunato, G., Reifler, F.A., Ritter, A., Harvey, A.S., Vital, A., and Graule, T.: Nitrogen doping of TiO2 photocatalyst forms a second eg state in the oxygen 1s NEXAFS pre-edge. J. Phys. Chem. C 114, 516 (2010).
73. Braun, A., Sivula, K., Bora, D.K., Zhu, J., Zhang, L., Grätzel, M., Guo, J., and Constable, E.C.: Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting. J. Phys. Chem. C 116, 16870 (2012).
74. Bora, D.K., Braun, A., Erat, S., Ariffin, A.K., Löhnert, R., Sivula, K., Töpfer, J., Grätzel, M., Manzke, R., Graule, T., and Constable, E.C.: Evolution of an oxygen near-edge X-ray absorption fine structure transition in the upper Hubbard band in α-Fe2O3 upon electrochemical oxidation. J. Phys. Chem. C 115, 5619 (2011).
75. Axnanda, S., Crumlin, E.J., Mao, B., Rani, S., Chang, R., Karlsson, P.G., Edwards, M.O.M., Lundqvist, M., Moberg, R., Ross, P., Hussain, Z., and Liu, Z.: Using “Tender” X-ray ambient pressure X-ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci. Rep. 5, 9788 (2015).
76. Velasco-Velez, J.-J., Wu, C.H., Pascal, T.A., Wan, L.F., Guo, J., Prendergast, D., and Salmeron, M.: The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science 346, 831 (2014).
77. Wu, C.H., Weatherup, R.S., and Salmeron, M.B.: Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks. Phys. Chem. Chem. Phys. 17, 30229 (2015).

X-ray spectroscopies studies of the 3d transition metal oxides and applications of photocatalysis

  • Yifan Ye (a1), Mukes Kapilashrami (a1), Cheng-Hao Chuang (a2), Yi-sheng Liu (a1), Per-Anders Glans (a1) and Jinghua Guo (a1) (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed