Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T02:20:02.229Z Has data issue: false hasContentIssue false

Utilizing alternate target deposition to increase the magnetoelectric effect at room temperature in a single phase M-type hexaferrite

Published online by Cambridge University Press:  27 June 2017

Hessam Izadkhah*
Affiliation:
Microwave Material Laboratory of Northeastern University, Boston, MA 02115, USA Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
Saba Zare
Affiliation:
Microwave Material Laboratory of Northeastern University, Boston, MA 02115, USA Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
Sivasubramanian Somu
Affiliation:
Kostas Micro and Nano Fabrication Facility, Northeastern University, Boston, MA 02115, USA
Fabrizio Lombardi
Affiliation:
Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
Carmine Vittoria
Affiliation:
Microwave Material Laboratory of Northeastern University, Boston, MA 02115, USA Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
*
Address all correspondence to Hessam Izadkhah at izdkhah.h@husky.neu.edu
Get access

Abstract

The Magnetoelectric (ME) effect has been observed in single phase hexaferrite bulk and thin films of SrCo2Ti2Fe8O19. In this paper we demonstrate that the ME linear coupling depends strongly on the Co ion concentration relative to the Ti ion concentration exhibiting extremum points at a concentration consistent with above formula. The Alternating Target Laser Ablation Deposition technique was utilized to deposit ME hexaferrite films for the first time. This allows for the deposition of transition metal ions at specific sites in the basic unit cell of the hexaferrite.

Type
Functional Oxides Research Letter
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Folen, V.J., Rado, G.T., and Stalder, E.W.: Anisotropy of the Magnetoelectric effect in Cr2O3. Phys. Rev. Lett. 6, 607 (1961).CrossRefGoogle Scholar
2. ASTROV, D.N.: Magnetoelectric effect in chromium oxide. Soviet Physics—JETP 13, 5 (1960).Google Scholar
3. Fiebig, M.: Revival of the magnetoelectric effect. J Phys D Appl Phys 38, R123 (2005).CrossRefGoogle Scholar
4. Kitagawa, Y., Hiraoka, Y., Honda, T., Ishikura, T., Nakamura, H., and Kimura, T.: Low-field magnetoelectric effect at room temperature. Nat. Mater. 9, 797 (2010).CrossRefGoogle ScholarPubMed
5. Wang, L., Wang, D., Cao, Q., Zheng, Y., Xuan, H., Gao, J., and Du, Y.: Electric control of magnetism at room temperature. Sci. Rep. 2, 223 (2012).CrossRefGoogle ScholarPubMed
6. Mohebbi, M., Ebnabbasi, K., and Vittoria, C.: First observation of magnetoelectric effect in M-type hexaferrite thin films. J. Appl. Phys. 113, 17C710 (2013).CrossRefGoogle Scholar
7. Ishiwata, S., Taguchi, Y., Murakawa, H., Onose, Y., and Tokura, Y.: Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319, 1643 (2008).CrossRefGoogle Scholar
8. Hiraoka, Y., Nakamura, H., Soda, M., Wakabayashi, Y., and Kimura, T.: Magnetic and magnetoelectric properties of Ba2-xSrxNi2Fe12O22single crystals with Y-type hexaferrite structure. J. Appl. Phys. 110, 033920 (2011).CrossRefGoogle Scholar
9. Taniguchi, K., Abe, N., Ohtani, S., Umetsu, H., and Arima, T.-h: Ferroelectric polarization reversal by a magnetic field in multiferroic Y-type hexaferrite Ba2Mg2Fe12O22. Appl. Phys. Exp. 1, 031301 (2008).CrossRefGoogle Scholar
10. Ebnabbasi, K., Vittoria, C., and Widom, A.: Converse magnetoelectric experiments on a room-temperature spirally ordered hexaferrite. Phys. Rev. B 86, 024430 (2012).CrossRefGoogle Scholar
11. Soda, M., Ishikura, T., Nakamura, H., Wakabayashi, Y., and Kimura, T.: Magnetic ordering in relation to the room-temperature magnetoelectric effect of Sr3Co2Fe24O41. Phys. Rev. Lett. 106, 087201 (2011).CrossRefGoogle Scholar
12. Ebnabbasi, K., Mohebbi, M., and Vittoria, C.: Room temperature magnetoelectric effects in bulk poly-crystalline materials of M-and Z-type hexaferrites. J. Appl. Phys. 113, 17C703 (2013).CrossRefGoogle Scholar
13. Tokunaga, Y., Kaneko, Y., Okuyama, D., Ishiwata, S., Arima, T., Wakimoto, S., Kakurai, K., Taguchi, Y., and Tokura, Y.: Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity. Phys. Rev. Lett. 105, 257201 (2010).CrossRefGoogle ScholarPubMed
14. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960).CrossRefGoogle Scholar
15. Vittoria, C., Somu, S., and Widom, A.: Tensor properties of the magnetoelectric coupling in hexaferrites. Phys. Rev. B 89, 134413 (2014).CrossRefGoogle Scholar
16. Landolt, H., Bornstein, R., Madelung, O., Hellwege, K.H., Pies, W., Weiss, A., and Pieper, G.: Numerical Data and Functional Relationships in Science and Technology. Group VIII, Advanced Materials and Technologies (Springer, Berlin, 2002).Google Scholar
17. Izadkhah, H., Zare, S., Somu, S., and Vittoria, C.: Effects of cobalt substitutions on the magnetoelectric coupling of M-type hexaferrite films. Appl. Phys. Lett. 106, 142905 (2015).CrossRefGoogle Scholar
18. Karim, R. and Vittoria, C.: The engineering of ferrite films at the atomic scale. J. Magn. Magn. Mater. 167, 27 (1997).CrossRefGoogle Scholar
19. Izadkhah, H., Zare, S., Somu, S., and Vittoria, C.: Deposition of Magnetoelectric Ferrite Thin Films Using Multiple Targets Technique. IEEE Trans Magnetics. 52, 1–4 (2016).CrossRefGoogle Scholar
20. Vittoria, C.: Magnetics, Dielectrics, and Wave Propagation with MATLAB Codes (CRC Press, Boca Raton, 2011).Google Scholar
21. Landau, L. and Lifshitz, E.: Pitaevskii LP Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984).Google Scholar
22. Vittoria, C.: Ferrimagnetic resonance and magnetoelastic excitations in magnetoelectric hexaferrites. Phys. Rev. B 92, 064407 (2015).CrossRefGoogle Scholar
23. Beevers, J.E., Love, C.J., Cavill, S.A., Izadkhah, H., Vittoria, C., Fan, R., Laan, G.v.d, and Dhesi, S.S.: A Polarised Soft X-ray Study of Co-Ti Substituted M-type Magnetoelectric Hexaferrites. Phys. Rev. Lett. (to be published).Google Scholar
24. Smit, J. and Wijn, H.: Ferrites Philips Technical Library (Eindhoven, The Netherlands, 278, 1959).Google Scholar
25. Dionne, G.F.: Magnetic Oxides 14, (Springer, 2009).CrossRefGoogle Scholar