Skip to main content Accessibility help

Understanding growth mechanisms of epitaxial manganese oxide (Mn3O4) nanostructures on strontium titanate (STO) oxide substrates

  • Jia Yin Liu (a1), Xuan Cheng (a1), Valanoor Nagarajan (a1) and Huo Lin Xin (a2)


The role of substrate orientation on interface registry and nanocrystal shape has been investigated for epitaxial manganese oxide (Mn3O4) nanocrystals. Mn3O4 (101) nanoplatelets and (112)-orientated nanowires have been successfully deposited on (111) and (110) SrTiO3 (STO) substrates, respectively. Under higher magnifications, the (101) platelets were found to exhibit step-like growth, spiraling outward from a local dislocation site at the Mn3O4–STO interface. Selected area electron diffraction analysis from transmission electron microscope (TEM) was carried out to determine the in-plane edge directionalities of (101) and (112) Mn3O4. We found the (101) Mn3O4 orientation to exhibit a complex in-plane epitaxial relation of $[2\overline {31} ]$ Mn3O4//[100]STO and an out-of-plane relation of $[\overline 1 01]$ Mn3O4// $[\overline 1 11]$ STO. Furthermore, lattice misorientations of 58° in-plane and 35° out-of-plane have been calculated, attributed to the shear caused by the spiral growth. For the (112) Mn3O4 nanowires, the TEM diffraction pattern indicates pyramidal cross-sections based along $[0\overline {11} ]$ STO. Subsequent calculations reveal that the (112) nanowires have their long axis (c-axis) such that [001]Mn3O4//[110]STO. Thus the nanowires grow preferentially along its longest axis giving rise to the observed shape and anisotropic nature.


Corresponding author

Address all correspondence to Valanoor Nagarajan


Hide All
1.Tersoff, J. and Tromp, R.M.: Shape transition in growth of strained islands: spontaneous formation of quantum wires. Phys. Rev. Lett. 70, 2782 (1993).
2.Silly, F. and Castell, M.R.: Selecting the shape of supported metal nanocrystals: Pd huts, hexagons, or pyramids on SrTiO3. Phys. Rev. Lett. 94, 046103 (2005).
3.Marshall, M.S.J. and Castell, M.R.: Shape transitions of epitaxial islands during strained layer growth: anatase TiO2 (001) on SrTiO3 (001). Phys. Rev. Lett. 102, 146102 (2009).
4.Armand, M. and Tarascon, J.M.: Building better batteries. Nature 451, 652 (2008).
5.Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., Lu, X., Choi, D., Lemmon, J.P., and Liu, J.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577 (2011).
6.Gogotsi, Y. and Simon, P.: True performance metrics in electrochemical energy storage. Science 334, 917 (2011).
7.Silly, F. and Castell, M.R.: Growth of Ag icosahedral nanocrystals on a SrTiO3(001) support. Appl. Phys. Lett. 87 213107:1-213107:3 (2005).
8.Rousset, S., Chiang, S., Fowler, D.E., and Chambliss, D.D.: Intermixing and three-dimensional islands in the epitaxial growth of Au on Ag (110). Phys. Rev. Lett. 69, 3200 (1992).
9.Mundschau, M., Bauer, E., Telieps, W., and Świȩch, W.: In situ studies of epitaxial growth in the low energy electron microscope. Surf. Sci. 213, 381 (1989).
10.Broughton, J.N. and Brett, M.J.: Investigation of thin sputtered Mn films for electrochemical capacitors. Electrochim. Acta 49, 4439 (2004).
11.Djurfors, B., Broughton, J.N., Brett, M.J., and Ivey, D.G.: Electrochemical oxidation of Mn/MnO films: formation of an electrochemical capacitor. Acta Mater. 53, 957 (2005).
12.Andreev, N.V., Sviridova, T.A., Chichkov, V.I., Volodin, A.P., Van Haesendonck, C., and Mukovskii, Y.M.: Crystal structure and surface morphology of magnetron sputtering deposited hexagonal and perovskite-like YbMnO3 thin films. J. Alloys Compd. 586, S343 (2014).
13.Davis, M.E.: Ordered porous materials for emerging applications. Nature 417, 813 (2002).
14.Xia, H., Meng, Y.S., Li, X., Yuan, G., and Cui, C.: Porous manganese oxide generated from lithiation/delithiation with improved electrochemical oxidation for supercapacitors. J. Mater. Chem. 21, 15521 (2011).
15.Bogle, K.A., Anbusathaiah, V., Arredondo, M., Lin, J.-Y., Chu, Y.-H., O'Neill, C., Gregg, J.M., Castell, M.R., and Nagarajan, V.: Synthesis of epitaxial metal oxide nanocrystals via a phase separation approach. ACS Nano 4, 5139 (2010).
16.Bogle, K.A., Cheung, J., Chen, Y.-L., Liao, S.-C., Lai, C.-H., Chu, Y.-H., Gregg, J.M., Ogale, S.B., and Valanoor, N.: Epitaxial magnetic oxide nanocrystals via phase decomposition of bismuth perovskite precursors. Adv. Funct. Mater. 22, 5224 (2012).
17.Liu, J., Ng, Y.H., Okatan, M.B., Amal, R., Bogle, K.A., and Nagarajan, V.: Interface-dependent electrochemical behavior of nanostructured manganese (IV) oxide (Mn3O4). Electrochim. Acta 130, 810 (2014).
18.Burton, W.K., Cabrera, N., and Frank, F.C.: The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. Ser. A 243, 299 (1951).
19.Frank, F.C.: The growth of carborundum: dislocations and polytypism. Philos. Mag. 42, 1014 (1951).
20.Seiss, M., Ouisse, T., and Chaussende, D.: Comparison of the spiral growth modes of silicon-face and carbon-face silicon carbide crystals. J. Cryst. Growth 384, 129 (2013).
21.Frank, F.C.: The influence of dislocations on crystal growth. Discuss. Faraday Soc. 5, 48 (1949).
22.Cabrera, N. and Burton, W.K.: Crystal growth and surface structure. Part II. Discuss. Faraday Soc. 5, 40 (1949).
23.Burton, W.K. and Cabrera, N.: Crystal growth and surface structure. Part I. Discuss. Faraday Soc. 5, 33 (1949).
24.Ciesielski, D. and Oleksy, C.: Diffusion and aggregation of adatoms on faceted Pd/Mo (111) surface. Surf. Sci. 606, 1481 (2012).
25.Hata, M., Isu, T., Watanabe, A., Kajikawa, Y., and Katayama, Y.: Surface diffusion and sticking coefficient of adatoms to atomic steps during molecular beam epitaxy growth. J. Cryst. Growth 114, 203 (1991).
Type Description Title
Supplementary materials

Liu supplementary material S1
Liu supplementary material S1

 Word (564 KB)
564 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed