1.Narayan, J., Godbole, V., and White, C.: Laser method for synthesis and processing of continuous diamond films on nondiamond substrates. Science 252, 416 (1991).
2.Narayan, J. and Bhaumik, A.: Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 118, 215303 (2015).
4.Heremans, J., Olk, C., Eesley, G., Steinbeck, J., and Dresselhaus, G.: Observation of metallic conductivity in liquid carbon. Phys. Rev. Lett. 60, 452 (1988).
5.Narayan, J., and Bhaumik, A.: Q-carbon discovery and formation of single-crystal diamond nano-and microneedles and thin films. Mater. Res. Lett. 4, 118 (2016).
6.Narayan, J. and Bhaumik, A.: Research update: direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air. Appl. Phys. Lett. Mater. 3, 100702 (2015).
7.Bhaumik, A., Sachan, R., Gupta, S., and Narayan, J.: Discovery of high-temperature superconductivity (T c = 55 K) in B-Doped Q-Carbon. ACS Nano 11, 11915 (2017).
8.Narayan, J., Gupta, S., Bhaumik, A., Sachan, R., Cellini, F., and Reido, E.: Q-carbon is harder than diamond. MRS Comm., 1 (2018). doi: 10.1557/mrc.2018.35.
9.Gupta, S., Sachan, R., Bhaumik, A., and Narayan, J.: Superhard Q-carbon nanocomposites J. Appl. Phys. (2018) under review.
10.Bhaumik, A., Nori, S., Sachan, R., Gupta, S., Kumar, D., Majumdar, A.K., and Narayan, J.: Room-temperature ferromagnetism and extraordinary hall effect in nanostructured Q-carbon: implications for potential spintronic devices. ACS Appl. Nano Mater. 1, 807 (2018). doi: 10.1021/acsanm.7b00253.
11.Bhaumik, A., Sachan, R., and Narayan, J.: High-temperature superconductivity in boron-doped Q-carbon. ACS Nano 11, 11915 (2017). doi: 10.1021/acsnano.7b06888.
12.Bhaumik, A., Sachan, R., and Narayan, J.: A novel high-temperature carbon-based superconductor: B-doped Q-carbon. J. Appl. Phys. 122, 045301 (2017).
13.Narayan, J. and Bhaumik, A.: Novel synthesis and properties of pure and NV-doped nanodiamonds and other nanostructures. Mater. Res. Lett. 5, 242 (2016).
14.Kumomi, H.: Location control of crystal grains in excimer laser crystallization of silicon thin films. Appl. Phys. Lett. 83, 434 (2003).
15.Shamsa, M., Liu, W., Balandin, A., Casiraghi, C., Milne, W., and Ferrari, A.: Thermal conductivity of diamond-like carbon films. Appl. Phys. Lett. 89, 161921 (2006).
16.Steinbeck, J., Dresselhaus, G., and Dresselhaus, M.: The properties of liquid carbon. Int. J. Therm. 11, 789 (1990).
17.Ho, C.Y., Powell, R.W., and Liley, P.E.: Thermal conductivity of the elements: a comprehensive review, (NATIONAL STANDARD REFERENCE DATA SYSTEM1974).
18.Sachan, R., Yadavali, S., Shirato, N., Krishna, H., Ramos, V., Duscher, G., Pennycook, S.J., Gangopadhyay, A., Garcia, H., and Kalyanaraman, R.: Self-organized bimetallic ag–co nanoparticles with tunable localized surface plasmons showing high environmental stability and sensitivity. Nanotechnology 23, 275604 (2012).
19.Sachan, R., Ramos, V., Malasi, A., Yadavali, S., Bartley, B., Garcia, H., Duscher, G., and Kalyanaraman, R.: Oxidation-resistant silver nanostructures for ultrastable plasmonic applications. Adv. Mater. 25, 2045 (2013).
20.Sachan, R., Malasi, A., Ge, J., Yadavali, S., Krishna, H., Gangopadhyay, A., Garcia, H., Duscher, G., and Kalyanaraman, R.: Ferroplasmons: intense localized surface plasmons in metal-ferromagnetic nanoparticles. ACS Nano 8, 9790 (2014).
21.Trice, J., Thomas, D., Favazza, C., Sureshkumar, R., and Kalyanaraman, R.: Pulsed-laser-induced dewetting in nanoscopic metal films: theory and experiments. Phys. Rev. B 75, 235439 (2007).
22.Bhaumik, A., and Narayan, J.: Wafer scale integration of reduced graphene oxide by novel laser processing at room temperature in air. J. Appl. Mater. 10, 105304 (2016).
23.Bhaumik, A., and Narayan, J.: Synthesis and characterization of quenched and crystalline phases: Q-carbon, Q-BN, diamond and phase-pure c-BN. JOM 70, 456 (2018).
24.Narayan, J.: Dislocations, twins, and grain boundaries in CVD diamond thin films: atomic structure and properties. J. Mater. Res. 5, 2414 (1990).
25.Jackson, K.: Crystal Growth and Phase Formation. In Surface Modification and Alloying, edited by Poate, J.M., Foti, G. and Jacobson, D.C. (Springer, Boston, MA, 1983) p. 51.
26.Narayan, J.: Interface structures during solid-phase-epitaxial growth in ion implanted semiconductors and a crystallization model. J. Appl. Phys. 53, 8607 (1982).
27.Spaepen, F., Turnbull, D., Poate, J., and Mayer, J.: Laser annealing of semiconductors. In Laser Annealing of Semiconductors, edited by Poate, J.M. and Mayor, J.W. (Academic, New York, 1982), p. 15.
28.Cullis, A., Chew, N., Webber, H., and Smith, D.J.: Orientation dependence of high speed silicon crystal growth from the melt. J. Crys. Grow. 68, 624 (1984).
29.Singh, R.K. and Narayan, J.: A novel method for simulating laser-solid interactions in semiconductors and layered structures. Mater. Sci. Engg.: B 3, 217 (1989).