Skip to main content Accessibility help

Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production

  • Ki Chang Kwon (a1) (a2), Seokhoon Choi (a1), Kootak Hong (a1), Dinsefa Mensur Andoshe (a1), Jun Min Suh (a1), Changyeon Kim (a1), Kyoung Soon Choi (a3), Jeong Hyeon Oh (a2), Soo Young Kim (a2) and Ho Won Jang (a1)...


We demonstrate the tungsten disulfide (WS2) thin film catalysts prepared by the sulfurization of vacuum deposited WO3 thin films for efficient hydrogen production with over 90% Faradaic efficiency. The 23-nm-thick WS2 thin film catalyst heterojunction with p-type silicon photocathode could exhibit a photocurrent density of 8.3 mA/cm2 at 0 V versus a reversible hydrogen electrode (RHE), a low onset potential of 0.2 V versus RHE when photocurrent density reaches −1 mA/cm2 and long-term stability over 10 h. The enhanced catalytic activities of WS2/p-Si photocathodes compared with the bare p-Si photocathode originate from a number of edge sites in the synthesized polycrystalline thin films, which could act as hydrogen evolution catalyst.


Corresponding author

Address all correspondence to Soo Young Kim, Ho Won Jang at,


Hide All

These authors contributed equally to this work.



Hide All
1. Dunn, S.: Hydrogen futures: toward a sustainable energy system. Int. J. Hydrog. Energy 27, 235264 (2002).
2. Holladay, J.D., Hu, J., King, D.L., and Wang, Y.: An overview of hydrogen production technologies. Catal. Today 139, 244260 (2009).
3. Rostrup-Nielsen, J.R. and Rostrup-Nielsen, T.: Large-scale hydrogen production. Cattech 6, 150159 (2002).
4. Chen, X., Shen, S., Guo, L., and Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 65036570 (2010).
5. Osterloh, F.E. and Parkinson, B.A.: Recent developments in solar water-splitting photocatalysis. MRS Bulletin 36, 1722 (2011).
6. Reece, S.Y., Hamel, J.A., Sung, K., Jarvi, T.D., Esswein, A.J., Pijpers, J.J.H., and Nocera, D.G.: Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 345348 (2011).
7. Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., and Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 64466473 (2010).
8. Strandwitz, N.C., Turner-Evans, D.B., Tamboli, A.D., Chen, C.T., Atwater, H.A., and Lewis, N.S.: Photoelectrochemical behavior of planar and mircowire-array Si|GaP electrodes. Adv. Energy. Mater. 2, 11091116 (2012).
9. Zhu, L., Lin, H., Li, Y., Liao, F., Lifshitz, Y., Sheng, M., Lee, S.-T., and Shao, M.: A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials. Nat. Comm. 7, 12272 (2016).
10. Li, M., Ma, Q., Zi, W., Liu, X., Zhu, X., and Liu, S.: Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction. Sci. Adv. 1, e1400268 (2015).
11. Kye, J., Shin, M., Lim, B., Jang, J.-W., Oh, L., and Hwang, S.: Plantinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution. ACS Nano, 7, 60176023 (2013).
12. Andoshe, D.M., Jeon, J.-M., Kim, S.Y., and Jang, H.W.: Two-dimensional transition metal dichalcogenide materials for solar water splitting. Electron. Mater. Lett. 11, 323335 (2015).
13. Kwon, K.C., Kim, C., Le, Q.V., Gim, S., Jeon, J.-M., Ham, J.Y., Lee, J.-L., Jang, H.W., and Kim, S.Y.: Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices. ACS Nano 9, 41464155 (2015).
14. Ding, Q., Zhai, J., Cabán-Acevedo, M., Shearer, M.J., Li, L., Chang, H.-C., Tsai, M.-L., Ma, D., Zhang, X., Hamers, R.J., He, J.-H., and Jin, S.: Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids. Adv. Mater. 27, 65116518 (2015).
15. Ding, Q., Meng, F., English, C.R., Cabán-Acevedo, M., Shearer, M.J., Liang, D., Daniel, A.S., Hamers, R.J., and Jin, S.: Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2 . J. Am. Chem. Soc. 136, 85048507 (2014).
16. Ding, Q., Song, B., Xu, P., and Jin, S.: Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem 1, 699726 (2016).
17. Morrish, R., Haak, T., and Wolden, C.A.: Low-temperature synthesis of n-type WS2 thin films via H2S plasma sulfurization of WO3 . Chem. Mater. 26, 39863992 (2014).
18. Bianco, G.V., Losurdo, M., Giangregorio, M.M., Sacchetti, A., Prete, P., Lovergine, N., Caperzzuto, P., and Bruno, G.: Direct epitaxial CVD synthesis of tungsten disulfide on epitaxial and CVD graphene. RSC adv. 5, 9870098708 (2015).
19. Kwon, K.C., Choi, S., Hong, K., Moon, C.W., Shim, Y.-S., Kim, D.H., Kim, T., Sohn, W., Jeon, J.-M., Lee, C.-H., Nam, K.T., Han, S., Kim, S.Y., and Jang, H.W.: Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy Environ. Sci. 9, 22402248 (2016).
20. Panigrahi, P.K. and Pathak, A.: Mircowave-assisted synthesis of WS2 nanowires through tetrathiotungstate precursors. Sci. Technol. Adv. Mater. 9, 045008 (2008).
21. Fu, Q., Wang, W., Yang, L., Huang, J., Zhang, J., and Xiang, B.: Controllable synthesis of high quality monolayer WS2 on a SiO2/Si substrate by chemical vapor deposition. RSC Adv. 5, 1579515799 (2015).
22. Lan, C., Li, C., and Liu, Y.: Large-area synthesis of monolayer WS2 and its ambient-sensitive photo-detecting performance. Nanoscale 7, 59745980 (2015).
23. Mishra, A.K., Lakshmi, K.V., and Huang, L.: Eco-friendly synthesis of metal dichalcogenides nanosheets and their environmental remediation potential driven by visible light. Sci. Rep. 5, 15718 (2015).
24. Berkdemir, A., Gutiérrez, H.R., Botello-Méndez, A.R., Perea-López, N., Elías, A.L., Chia, C., Wang, B., Crespi, V.H., López-Urías, F., Charlier, J.-C., Terrones, H., and Terrones, M.: Idenfication of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1755 (2013).
25. Li, H., Zhang, Q., Yap, C.C.R., Tay, B.K., Edwin, T.H.T., Olivier, A., and Baillargeat, D.: From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 13851390 (2012).
26. Nguyen, T.P., Sohn, W., Oh, J.H., Jang, H.W., and Kim, S.Y.: Size-dependent properties of two-dimensional MoS2 and WS2 . J. Phys. Chem. C 120, 1007810085 (2016).
27. Xu, Z.-Q., Zhang, Y., Lin, S., Zheng, C., Zhong, Y.L., Xia, X., Li, Z., Sophia, P.J., Fuhrer, M.S., Cheng, Y.-B., and Bao, Q.: Synthesis and transfer of large-area monolayer WS2 crystals: moving toward the recyclable use of sapphire substrates. ACS Nano 9, 61786187 (2015).
28. Nguyen, T.P., Choi, S., Jeon, J.-M., Kwon, K.C., Jang, H.W., and Kim, S.Y.: Transition metal disulfide nanosheets synthesized by facile sonication method for the hydrogen evolution reaction. J. Phys. Chem. C 120, 39293935 (2016).
Type Description Title
Supplementary materials

Kwon supplementary material
Kwon supplementary material 1

 Word (473 KB)
473 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed