Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-07T22:41:59.671Z Has data issue: false hasContentIssue false

Thermoelectric and mechanical properties of Ag and Cu doped (GeTe)0.96(Bi2Te3)0.04

Published online by Cambridge University Press:  08 August 2018

Gilad M. Guttmann
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel Nuclear Research Center Negev, POB 9001, Beer-Sheva, Israel
Reuven Gertner
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel Nuclear Research Center Negev, POB 9001, Beer-Sheva, Israel
Shmuel Samuha
Affiliation:
Nuclear Research Center Negev, POB 9001, Beer-Sheva, Israel
Dana Ben-Ayoun
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
Shlomo Haroush
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel Nuclear Research Center Negev, POB 9001, Beer-Sheva, Israel
Yaniv Gelbstein*
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
*
Address all correspondence to Yaniv Gelbstein at yanivge@bgu.ac.il
Get access

Abstract

Thermoelectric (TE) is a heat-to-electricity energy conversion method with increasing attention. In recent years, novel highly efficient TE materials, including GeTe and other IV–VI based alloys, were reported, mainly due to either electronic optimization of transport properties or nanostructuring for minimization of the lattice thermal conductivity. Yet, the mechanical properties of such materials (with brittle nature), which are significant for obtaining the required durability under the associated thermo-mechanical conditions of practical applications, were much less tackled. The challenge is combining the both, upon introducing alloying elements, positively contributing both the TE figure of merit and the mechanical durability. In the current research, the TE and mechanical (mainly compression and fracture toughness) effects of Ag- and Cu-doping of the GeTe-rich (GeTe)0.96(Bi2Te3)0.04 alloy were investigated, suggesting improvement on both aspects.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors equally contributed to the research.

References

1.Jeong, K., Park, S., Park, D., Ahn, M., Han, J., Yang, W., Jeong, H.-S. and Cho, M.-H.: Evolution of crystal structures in GeTe during phase transition. Sci. Rep. 7, 955 (2017).Google Scholar
2.Hazan, E., Ben-Yehuda, O., Madar, N., and Gelbstein, Y.: Functional graded germanium-lead chalcogenides-based thermoelectric module for renewable energy applications. Adv. Energy Mater. 5, 1500272 (2015).Google Scholar
3.Davidow, J. and Gelbstein, Y.: A comparison between the mechanical and thermoelectric properties of the highly efficient p-type GeTe rich compositions – TAGS-80, TAGS-85 and 3% Bi2Te3 doped Ge0.87Pb0.13Te. J. Electron. Mater. 42, 15421549 (2013).Google Scholar
4.Gelbstein, Y., Dashevsky, Z. and Dariel, M.P.: Highly efficient bismuth telluride doped p-type Pb0.13Ge0.87Te for thermoelectric applications. Phys. Stat. Sol. (RRL) 1, 232234 (2007).Google Scholar
5.Dado, B., Gelbstein, Y. D., Mogilansky, V., Ezersky, M. and Dariel, P.: The structural evolution following the spinodal decomposition of the pseudo-ternary (Pb0.3Sn0.1Ge0.6)Te compound. J. Electron. Mater. 39, 21652171 (2010).Google Scholar
6.Gelbstein, Y., Ben-Yehuda, O., Dashevsky, Z. and Dariel, M.P.: Phase transitions of p-type (Pb,Sn,Ge)Te based alloys for thermoelectric applications. J. Cryst. Growth 311, 42894292 (2009).Google Scholar
7.Gelbstein, Y., Davidow, J., Leshem, E., Pinshow, O. and Moisa, S.: Significant lattice thermal conductivity reduction following phase separation of the highly efficient GexPb1−xTe thermoelectric alloys. Phys. Status Solidi B 251, 14311437 (2014).Google Scholar
8.Hazan, E., Madar, N., Parag, M., Casian, V., Ben-Yehuda, O., and Gelbstein, Y.: Effective electronic mechanisms for optimizing the thermoelectric properties of GeTe rich alloys. Adv. Electron. Mater. 1500228 (2015).Google Scholar
9.Girard, S.N., He, J., Zhou, X., Shoemaker, D., Jaworski, C.M., Uher, C., Dravid, V.P., Heremans, J.P. and Kanatzidis, M.: High performance of Na- doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. J. Am. Chem. Soc. 133, 1658816597 (2011).Google Scholar
10.Ni, J.E., Case, E.D., Khabir, K.N., Stewart, R.C., Wu, C.-I., Hogan, T.P., Timm, E.J., Girard, S.N. and Kanatzidis, M.G.: Room temperature young's modulus, shear modulus, Poisson's ratio and hardness of PbTe-PbS thermoelectric materials. Mater. Sci. Eng. B 170, 5866 (2010).Google Scholar
11.Wu, D., Zhao, L.-D. X., Tong, W., Li, L., Wu, Q., Tan, Y., Pei, L., Huang, J.-F., Li, Y., Zhu, M.G. and Kanatzidis, J., H. Superior thermoelectric performance in PbTe-PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. Energy Environ. Sci. 8, 2056 (2015).Google Scholar
12.Wu, H.J., Zhao, L-D, Zheng, F.S., Wu, D., Pei, Y.L., Tong, X., Kanatzidis, M.G., and He, J.Q.: Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3. Nat. Commun. 5, 4515 (2014).2+in+phase-separated+PbTe0.7S0.3.+Nat.+Commun.+5,+4515+(2014).>Google Scholar
13.Scheall, M. and Balke, B.: Phase separation as a key to a thermoelectric high efficiency. Phys. Chem. Chem. Phys. 15, 1868 (2013).Google Scholar
14.Appel, O., Zilber, T., Kalabukhov, S., Beeri, O., and Gelbstein, Y.: Morphological effects on the thermoelectric properties of Ti0.3Zr0.35Hf0.35Ni1+δSn alloys following phase separation. J. Mater. Chem. C 3, 1165311659 (2015).Google Scholar
15.Kirievsky, K., Gelbstein, Y., and Fuks, D.: Phase separation and antisite defects possibilities for enhancement the thermoelectric efficiency in TiNiSn half-Heusler alloys. J. Solid State Chem. 203, 247254 (2013).Google Scholar
16.Graf, T., Klaer, P., Barth, J., Balke, B., Elmers, H.-J. and Felser, C.: Phase separation in the quaternary Heusler compound CoTi1−xMnxSb – a reduction in the thermal conductivity for thermoelectric applications. Scr. Mater. 63, 12161219 (2010).Google Scholar
17.Rausch, E., Balke, B., Stahlhofen, J.M., Ouardi, S., Burkhardt, U. and Felser, C.: Fine tuning of thermoelectric performance in phase-separated half-Heulser compounds. J. Mater. Chem. C 3, 10409 (2015).Google Scholar
18.Takashiri, M., Kurita, K., Hagino, H., Tanaka, S. and Miyazaki, K.: Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method. J. Appl. Phys. 118, 065301 (2015).Google Scholar
19.Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).Google Scholar
20.Zhao, L.-D., Tan, G. S., Hao, J., He, Y., Pei, H., Chi, H., Wang, S., Gong, H., Xu, V.P., Dravid, C., Snyder, U. G.J. C., Wolverton, M.G. and Kanatzidis, : Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 10.1126, aad3749 (2015).Google Scholar
21.Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233238 (2012).Google Scholar
22.Debski, A., Debski, R., and Gasior, W.: New features of Entall database: comparison of experimental and model formation enthalpies. Arch. Metall. Mater. 59, 13371343 (2014).Google Scholar
23.Madar, N., Givon, T., Mogilyanski, D. and Gelbstein, Y.: High thermoelectric potential of Bi2Te3 alloyed GeTe-rich phases. J. Appl. Phys. 120, 035102 (2016).Google Scholar
24.Weintraub, L., Davidow, J., Tunbridge, J., Dixon, R., Reece, M., Ning, H., Agote, I. and Gelbstein, Y.: Investigation of the microstructural and thermoelectric properties of the (GeTe)0.95(Bi2Te3)0.05 composition for thermoelectric power generation applications. J. Nanomater. 284634 (2014).Google Scholar
25.Gelbstein, Y.: Phase morphology effects on the thermoelectric properties of Pb0.25Sn0.25Ge0.5Te. Acta Mater. 61, 14991507 (2013).Google Scholar
26.Rogl, G., Grytsiv, A., Gürth, M., Tavassoli, A., Ebner, C., Wünschek, A., Puchegger, S., Soprunyuk, V., Schranz, W., Bauer, E., Müller, H., Zehetbauer, M., and Rogl, P.: Mechanical properties of half-Heusler alloys. Acta Mater. 107, 178195 (2016).Google Scholar
27.Gelbstein, Y., Gotesman, G., Lishzinker, Y., Dashevsky, Z., and Dariel, M.P.: Mechanical properties of PbTe- based thermoelectric semiconductors. Scr. Mater. 58, 251254 (2008).Google Scholar
28.Li, B., Xie, P., Zhang, S., Zhang, S. and Liu, D.: Lead germanium telluride: a mechanical robust infrared high-index layer. J. Mater. Sci. 46, 40004004 (2011).Google Scholar
29.Perumal, S., Roychowdhury, S., Negi, D.S., Datta, R. and Biswas, K.: High thermoelectric performance and enhanced mechanical stability of p-type Ge1−xSbxTe. Chem. Mater. 27, 71717178 (2015).Google Scholar
30.Pereira, P.B., Sergueev, I., Gorsse, S., Dadda, J., Müller, E. and Hermann, R.P.: Lattice dynamics and structure of GeTe, SnTe, PbTe. Phys. Status Solidi B 250, 13001307 (2013).Google Scholar
31.Littlewood, P.B.: The crystal structure of IV-VI compounds: II. A microscopic model for cubic/rhombohedral materials. J. Phys. C: Solid St. Phys. 13, 48754892 (1980).Google Scholar